X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath.tex;h=bd2a888430d738d62ddc7b8aa1911e2f423d7043;hp=57aef07a8f9e51c8a0ea126dbc1c08f5c51febee;hb=93808b285afe6d16ac131af43108b975a0cc9042;hpb=5898b999f5d72857fa765fd544262e7c0104042e diff --git a/physics_compact/math.tex b/physics_compact/math.tex index 57aef07..bd2a888 100644 --- a/physics_compact/math.tex +++ b/physics_compact/math.tex @@ -1,9 +1,9 @@ \part{Mathematical foundations} -Reminder: Modern Quantum Chemistry \& Sakurai \& Group Theory \ldots - \chapter{Linear algebra} +Reminder: Modern Quantum Chemistry \& Sakurai \& Group Theory \ldots + \section{Vectors and bases} A vector $\vec{a}$ of an $N$-dimensional vector space (see \ref{math_app:vector_space} for mathematical details) is represented by its components $a_i$ with respect to a set of $N$ basis vectors ${\vec{e}_i}$ @@ -21,7 +21,7 @@ which satisfies the properties of an inner product (see \ref{math_app:product}) \begin{equation} ||\vec{a}||=\sqrt{(\vec{a},\vec{a})} \end{equation} -that just corresponds to the length of vector \vec{a}. +that just corresponds to the length of vector $\vec{a}$. Evaluating the scalar product $(\vec{a},\vec{b})$ by the sum representation of \eqref{eq:vec_sum} leads to \begin{equation} (\vec{a},\vec{b})=(\sum_i\vec{e}_ia_i,\sum_j\vec{e}_jb_j)=