X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath.tex;h=bd2a888430d738d62ddc7b8aa1911e2f423d7043;hp=c182a96cbce3e9031e14ad63b7952ff04ab5478c;hb=93808b285afe6d16ac131af43108b975a0cc9042;hpb=1b61eac526bb34de8c8060551f70c6e7cd437d89 diff --git a/physics_compact/math.tex b/physics_compact/math.tex index c182a96..bd2a888 100644 --- a/physics_compact/math.tex +++ b/physics_compact/math.tex @@ -1,9 +1,9 @@ \part{Mathematical foundations} -Reminder: Modern Quantum Chemistry \& Sakurai \& Group Theory \ldots - \chapter{Linear algebra} +Reminder: Modern Quantum Chemistry \& Sakurai \& Group Theory \ldots + \section{Vectors and bases} A vector $\vec{a}$ of an $N$-dimensional vector space (see \ref{math_app:vector_space} for mathematical details) is represented by its components $a_i$ with respect to a set of $N$ basis vectors ${\vec{e}_i}$ @@ -12,16 +12,16 @@ A vector $\vec{a}$ of an $N$-dimensional vector space (see \ref{math_app:vector_ \label{eq:vec_sum} \end{equation} i.e., if the basis set is complete, any vector can be written as a linear combination of these basis vectors. -The scalar product for an $N$-dimensional real vector space is defined as +The scalar product in an $N$-dimensional Euclidean vector space is defined as \begin{equation} (\vec{a},\vec{b})=\sum_i^N a_i b_i \text{ ,} \label{eq:vec_sp} \end{equation} -which enables to define a norm +which satisfies the properties of an inner product (see \ref{math_app:product}) and enables to define a norm \begin{equation} ||\vec{a}||=\sqrt{(\vec{a},\vec{a})} \end{equation} -that just corresponds to the length of vector \vec{a}. +that just corresponds to the length of vector $\vec{a}$. Evaluating the scalar product $(\vec{a},\vec{b})$ by the sum representation of \eqref{eq:vec_sum} leads to \begin{equation} (\vec{a},\vec{b})=(\sum_i\vec{e}_ia_i,\sum_j\vec{e}_jb_j)= @@ -47,10 +47,10 @@ Inserting the expression for the coefficients into \eqref{eq:vec_sum}, the vecto \begin{equation} \label{eq:complete} \vec{a}=\sum_i \vec{e}_i (\vec{e}_i,\vec{a}) \Leftrightarrow -\sum_i\vec{e}_i\cdot \vec{e}_i=\vec{1} +\sum_i\vec{e}_i\otimes \vec{e}_i=\vec{1} \end{equation} if the basis is complete. -Indeed, the very important identity representation by the outer product ($\cdot$) in the second part of \eqref{eq:complete} is known as the completeness relation or closure. +Indeed, the very important identity representation by the outer product ($\otimes$, see \ref{math_app:product}) in the second part of \eqref{eq:complete} is known as the completeness relation or closure. \section{Operators, matrices and determinants}