X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath_app.tex;h=001ed2b5cf9abaa7fb96b811be1c0c9af853759c;hp=1903ab18ef1c5e7e699f6bef5b6c9afc6f9ba284;hb=8ef90b6c5d602acae2f9788f01b5fea7531c8fb5;hpb=e2bc34a23f03db9417fa6d7a0a9b1d4a1538c0e6 diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index 1903ab1..001ed2b 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -1,5 +1,86 @@ \chapter{Mathematical tools} +\section{Vector algebra} + +\subsection{Vector space} +\label{math_app:vector_space} + +\begin{definition} +A vector space $V$ over a field $(K,+,\cdot)$ is an additive abelian group $(V,+)$ and an additionally defined scalar multiplication of $\vec{v}\in V$ by $\lambda\in K$, which fullfills: +\begin{itemize} +\item $\forall \vec{v} \, \exists 1$ with: $\vec{v}1=\vec{v}$ + (identity element of scalar multiplication) +\item $\vec{v}(\lambda_1+\lambda_2)=\vec{v}\lambda_1+\vec{v}\lambda_2$ + (distributivity of scalar multiplication) +\item $(\vec{v}_1+\vec{v}_2)\lambda=\vec{v}_1\lambda + \vec{v}_2\lambda$ + (distributivity of scalar multiplication) +\item $(\vec{v}\lambda_1)\lambda_2=\vec{v}(\lambda_1\lambda_2)$ + (compatibility of scalar multiplication with field multiplication) +\end{itemize} +The elements $\vec{v}\in V$ are called vectors. +\end{definition} +\begin{remark} +Due to the additive abelian group, the following properties are additionally valid: +\begin{itemize} +\item $\vec{u}+\vec{v}=\vec{v}+\vec{u}$ (commutativity of addition) +\item $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$ + (associativity of addition) +\item $\forall \vec{v} \, \exists \vec{0}$ with: + $\vec{0}+\vec{v}=\vec{v}+\vec{0}=\vec{v}$ + (identity elemnt of addition) +\item $\forall \vec{v} \, \exists -\vec{v}$ with: $\vec{v}+(-\vec{v})=0$ + (inverse element of addition) +\end{itemize} +The addition of two vectors is called vector addition. +\end{remark} + +\subsection{Dual space} + +\subsection{Inner and outer product} +\label{math_app:product} + +\begin{definition} +The inner product ... +\end{definition} + +\begin{definition} +If $\vec{u}\in U$, $\vec{v}\in V$ and $\vec{v}^{\dagger}\in V^{\dagger}$ are vectors within the respective vector spaces and $V^{\dagger}$ is the dual space of $V$, +the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{v}^{\dagger}$ and $\vec{u}$, +which constitutes a map $A:V\rightarrow U$ by +\begin{equation} +\vec{v}\mapsto\vec{v}^{\dagger}(\vec{v})\vec{u} +\text{ ,} +\end{equation} +where $\vec{v}^{\dagger}(\vec{v})$ denotes the linear functional $\vec{v}^{\dagger}\in V^{\dagger}$ on $V$ when evaluated at $\vec{v}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. + +In matrix formalism, with respect to a given basis ${\vec{e}_i}$ of $\vec{u}$ and ${\vec{e}'_i}$ of $\vec{v}$, +if $\vec{u}=\sum_i^m \vec{e}_iu_i$ and $\vec{v}=\sum_i^n\vec{e}'_iv_i$, +the outer product can be written as matrix $A$ as +\begin{equation} +\vec{u}\otimes\vec{v}=A=\left( +\begin{array}{c c c c} +u_1v_1 & u_1v_2 & \cdots & u_1v_n\\ +u_2v_1 & u_2v_2 & \cdots & u_2v_n\\ +\vdots & \vdots & \ddots & \vdots\\ +u_mv_1 & u_mv_2 & \cdots & u_mv_n\\ +\end{array} +\right) +\text{ .} +\end{equation} +\end{definition} +\begin{remark} +The matrix can be equivalently obtained by matrix multiplication: +\begin{equation} +\vec{u}\otimes\vec{v}=\vec{u}\vec{v}^{\dagger} \text{ ,} +\end{equation} +if $\vec{u}$ and $\vec{v}$ are represented as $m\times 1$ and $n\times 1$ column vectors, respectively. +Here, $\vec{v}^{\dagger}$ represents the conjugate transpose of $\vec{v}$. +By definition, and as can be easily seen in the matrix representation, the following identity holds: +\begin{equation} +(\vec{u}\otimes\vec{v})\vec{w}=\vec{u}(\vec{v},\vec{w}) +\end{equation} +\end{remark} + \section{Spherical coordinates} \section{Fourier integrals}