X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath_app.tex;h=4f7822e61b3162d17763f780c71369a7e0e97e65;hp=f1ac777ea2a51d8168b426991d5fca0a05b3e8c1;hb=eac23ae428984d20c62851681234b206ec1e3dc7;hpb=bc36ee251b928962cf2431d6582e5a5dd9cca682 diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index f1ac777..4f7822e 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -165,7 +165,7 @@ u_mv_1^* & u_mv_2^* & \cdots & u_mv_n^*\\ \right) \text{ ,} \end{equation} -which can be equivalently obtained by the rulrs of matrix multiplication +which can be equivalently obtained by the rules of matrix multiplication \begin{equation} \vec{u}\otimes\vec{v}=\vec{u}\vec{v}^{\dagger} \text{ ,} \end{equation} @@ -180,5 +180,65 @@ holds. \section{Spherical coordinates} +Cartesian coordinates $\vec{r}(x,y,z)$ are related to spherical coordinates $\vec{\tilde{r}}(r,\theta,\phi)$ by +\begin{eqnarray} +x&=&r\sin\theta\cos\phi\\ +y&=&r\sin\theta\sin\phi\\ +z&=&r\cos\theta +\end{eqnarray} +and +\begin{eqnarray} +r&=&(x^2+y^2+z^2)^{1/2}\\ +\theta&=&\arccos(z/r)\\ +\phi&=&\arctan(y/x) +\end{eqnarray} +The total differentials $dq_i$ and $dq'_i$ of two coordinate systems are related by partial derivatives. +\begin{equation} +dq_i=\sum_j \frac{\partial q_i}{\partial q'_j}dq'_j +\end{equation} +\begin{definition}[Jacobi matrix] +The matrix J with components +\begin{equation} +J_{ij}=\frac{\partial q_i}{\partial q'_j} +\end{equation} +is called the Jacobi matrix. +\end{definition} + +For cartesian and spherical coordinates the relation of the translations are +\begin{eqnarray} +dx&=&\frac{\partial x}{\partial r}dr + + \frac{\partial x}{\partial \theta}d\theta + + \frac{\partial x}{\partial \phi}d\phi\\ +dy&=&\frac{\partial y}{\partial r}dr + + \frac{\partial y}{\partial \theta}d\theta + + \frac{\partial y}{\partial \phi}d\phi\\ +dz&=&\frac{\partial z}{\partial r}dr + + \frac{\partial z}{\partial \theta}d\theta + + \frac{\partial z}{\partial \phi}d\phi\\ +\end{eqnarray} +and +\begin{eqnarray} +dr&=&\frac{\partial r}{\partial x}dx + + \frac{\partial r}{\partial y}dy + + \frac{\partial r}{\partial z}dz\\ +d\theta&=&\frac{\partial \theta}{\partial x}dx + + \frac{\partial \theta}{\partial y}dy + + \frac{\partial \theta}{\partial z}dz\\ +d\phi&=&\frac{\partial \phi}{\partial x}dx + + \frac{\partial \phi}{\partial y}dy + + \frac{\partial \phi}{\partial z}dz\\ +\end{eqnarray} +and vectorial translations using the Jacobi matrix are given by matrix multiplications +\begin{equation} +d\vec{r}(x,y,z)=Jd\vec{\tilde{r}}(r,\theta,\phi) +\end{equation} +and +\begin{equation} +d\vec{\tilde{r}}(r,\theta,\phi)=J^{-1}d\vec{r}(x,y,z) \text{ .} +\end{equation} +$J$ and $J^{-1}$ are explicitily given by +\begin{equation} +\end{equation} + \section{Fourier integrals}