X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath_app.tex;h=4f7822e61b3162d17763f780c71369a7e0e97e65;hp=f8361e867081cb0b6b6e2d4efc95990e239f1807;hb=eac23ae428984d20c62851681234b206ec1e3dc7;hpb=437d458c00fa2ee5b6d18a0fa5b450fe5a04d563 diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index f8361e8..4f7822e 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -139,7 +139,7 @@ and the usual rules of matrix multiplication. \end{remark} \begin{definition}[Outer product] -If $\vec{u}\in U$, $\vec{v},\vec{w}\in V$ are vectors within the respective vector spaces and $\varphi_{\vec{v}}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$ determined in some way from $\vec{v}$ (e.g.\ as in \eqref{eq:ip_mapping}), +If $\vec{u}\in U$, $\vec{v},\vec{w}\in V$ are vectors within the respective vector spaces and $\varphi_{\vec{v}}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$ (determined in some way by $\vec{v}$), the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\varphi_{\vec{v}}$ and $\vec{u}$, which constitutes a map $A:V\rightarrow U$ by \begin{equation} @@ -150,9 +150,10 @@ where $\varphi_{\vec{v}}(\vec{w})$ denotes the linear functional $\varphi_{\vec{ \end{definition} \begin{remark} -In matrix formalism, with respect to a given basis ${\vec{e}_i}$ of $\vec{u}$ and ${\vec{e}'_i}$ of $\vec{v}$, + +In matrix formalism, if $\varphi_{\vec{v}}$ is defined as in \eqref{eq:ip_mapping} and if $\vec{u}=\sum_i^m \vec{e}_iu_i$ and $\vec{v}=\sum_i^n\vec{e}'_iv_i$, -the outer product can be written as matrix $A$ as +the standard form of the outer product can be written as the matrix \begin{equation} \vec{u}\otimes\vec{v}=A=\left( \begin{array}{c c c c} @@ -162,22 +163,82 @@ u_2v_1^* & u_2v_2^* & \cdots & u_2v_n^*\\ u_mv_1^* & u_mv_2^* & \cdots & u_mv_n^*\\ \end{array} \right) -\text{ .} +\text{ ,} \end{equation} - -The matrix can be equivalently obtained by matrix multiplication: +which can be equivalently obtained by the rules of matrix multiplication \begin{equation} \vec{u}\otimes\vec{v}=\vec{u}\vec{v}^{\dagger} \text{ ,} \end{equation} if $\vec{u}$ and $\vec{v}$ are represented as $m\times 1$ and $n\times 1$ column vectors, respectively. -Here, $\vec{v}^{\dagger}$ represents the conjugate transpose of $\vec{v}$. -By definition, and as can be easily seen in the matrix representation, the following identity holds: +Here, again, $\vec{v}^{\dagger}$ represents the conjugate transpose of $\vec{v}$. +By definition, and as can be easily seen in matrix representation, the identity \begin{equation} (\vec{u}\otimes\vec{v})\vec{w}=\vec{u}(\vec{v},\vec{w}) \end{equation} +holds. \end{remark} \section{Spherical coordinates} +Cartesian coordinates $\vec{r}(x,y,z)$ are related to spherical coordinates $\vec{\tilde{r}}(r,\theta,\phi)$ by +\begin{eqnarray} +x&=&r\sin\theta\cos\phi\\ +y&=&r\sin\theta\sin\phi\\ +z&=&r\cos\theta +\end{eqnarray} +and +\begin{eqnarray} +r&=&(x^2+y^2+z^2)^{1/2}\\ +\theta&=&\arccos(z/r)\\ +\phi&=&\arctan(y/x) +\end{eqnarray} +The total differentials $dq_i$ and $dq'_i$ of two coordinate systems are related by partial derivatives. +\begin{equation} +dq_i=\sum_j \frac{\partial q_i}{\partial q'_j}dq'_j +\end{equation} +\begin{definition}[Jacobi matrix] +The matrix J with components +\begin{equation} +J_{ij}=\frac{\partial q_i}{\partial q'_j} +\end{equation} +is called the Jacobi matrix. +\end{definition} + +For cartesian and spherical coordinates the relation of the translations are +\begin{eqnarray} +dx&=&\frac{\partial x}{\partial r}dr + + \frac{\partial x}{\partial \theta}d\theta + + \frac{\partial x}{\partial \phi}d\phi\\ +dy&=&\frac{\partial y}{\partial r}dr + + \frac{\partial y}{\partial \theta}d\theta + + \frac{\partial y}{\partial \phi}d\phi\\ +dz&=&\frac{\partial z}{\partial r}dr + + \frac{\partial z}{\partial \theta}d\theta + + \frac{\partial z}{\partial \phi}d\phi\\ +\end{eqnarray} +and +\begin{eqnarray} +dr&=&\frac{\partial r}{\partial x}dx + + \frac{\partial r}{\partial y}dy + + \frac{\partial r}{\partial z}dz\\ +d\theta&=&\frac{\partial \theta}{\partial x}dx + + \frac{\partial \theta}{\partial y}dy + + \frac{\partial \theta}{\partial z}dz\\ +d\phi&=&\frac{\partial \phi}{\partial x}dx + + \frac{\partial \phi}{\partial y}dy + + \frac{\partial \phi}{\partial z}dz\\ +\end{eqnarray} +and vectorial translations using the Jacobi matrix are given by matrix multiplications +\begin{equation} +d\vec{r}(x,y,z)=Jd\vec{\tilde{r}}(r,\theta,\phi) +\end{equation} +and +\begin{equation} +d\vec{\tilde{r}}(r,\theta,\phi)=J^{-1}d\vec{r}(x,y,z) \text{ .} +\end{equation} +$J$ and $J^{-1}$ are explicitily given by +\begin{equation} +\end{equation} + \section{Fourier integrals}