X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath_app.tex;h=687f928df9145c3377402563658d5001d1090de2;hp=1903ab18ef1c5e7e699f6bef5b6c9afc6f9ba284;hb=f74a53b2acb28533ef22dbf3adb0c97dbb5dd958;hpb=e2bc34a23f03db9417fa6d7a0a9b1d4a1538c0e6 diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index 1903ab1..687f928 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -1,5 +1,156 @@ \chapter{Mathematical tools} +\section{Vector algebra} + +\subsection{Vector space} +\label{math_app:vector_space} + +\begin{definition} +A vector space $V$ over a field $(K,+,\cdot)$ is an additive abelian group $(V,+)$ and an additionally defined scalar multiplication of $\vec{v}\in V$ by $\lambda\in K$, which fullfills: +\begin{itemize} +\item $\forall \vec{v} \, \exists 1$ with: $\vec{v}1=\vec{v}$ + (identity element of scalar multiplication) +\item $\vec{v}(\lambda_1+\lambda_2)=\vec{v}\lambda_1+\vec{v}\lambda_2$ + (distributivity of scalar multiplication) +\item $(\vec{v}_1+\vec{v}_2)\lambda=\vec{v}_1\lambda + \vec{v}_2\lambda$ + (distributivity of scalar multiplication) +\item $(\vec{v}\lambda_1)\lambda_2=\vec{v}(\lambda_1\lambda_2)$ + (compatibility of scalar multiplication with field multiplication) +\end{itemize} +The elements $\vec{v}\in V$ are called vectors. +\end{definition} +\begin{remark} +Due to the additive abelian group, the following properties are additionally valid: +\begin{itemize} +\item $\vec{u}+\vec{v}=\vec{v}+\vec{u}$ (commutativity of addition) +\item $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$ + (associativity of addition) +\item $\forall \vec{v} \, \exists \vec{0}$ with: + $\vec{0}+\vec{v}=\vec{v}+\vec{0}=\vec{v}$ + (identity elemnt of addition) +\item $\forall \vec{v} \, \exists -\vec{v}$ with: $\vec{v}+(-\vec{v})=0$ + (inverse element of addition) +\end{itemize} +The addition of two vectors is called vector addition. +\end{remark} + +\subsection{Dual space} + +\begin{definition} +The dual space $V^{\dagger}$ of vector space $V$ over field $K$ is defined as the set of all linear maps from the vector space $V$ into its field $K$ +\begin{equation} +\varphi:V\rightarrow K \text{ .} +\end{equation} +These type of linear maps are termed linear functionals. +The dual space $V^{\dagger}$ becomes a vector space over $K$ itself by the following additional definitions +\begin{eqnarray} +(\varphi+\psi)(\vec{v}) & = & \varphi(\vec{v})+\psi(\vec{v}) \\ +(\lambda\varphi)(\vec{v}) & = & \lambda\varphi(\vec{v}) +\end{eqnarray} +for all $\vec{v}\in V$, $\varphi,\psi\in V^{\dagger}$ and $\lambda\in K$. + +The map $V^{\dagger}\times V \rightarrow K: [\varphi,\vec{v}]=\varphi(\vec{v})$ is termed dual pairing of a functional $\varphi\in V^{\dagger}$ and an elemnt $\vec{v}\in V$. +\end{definition} + +\subsection{Inner and outer product} +\label{math_app:product} + +\begin{definition} +The inner product on a vector space $V$ over $K$ is a map +\begin{equation} +(\cdot,\cdot):V\times V \rightarrow K +\text{ ,} +\end{equation} +which satisfies +\begin{itemize} +\item $(\vec{u},\vec{v})=(\vec{v},\vec{u})^*$ + (conjugate symmetry, symmetric for $K=\mathbb{R}$) +\item $(\lambda\vec{u},\vec{v})=\lambda(\vec{u},\vec{v})$ and + $(\vec{u}'+\vec{u}'',\vec{v})=(\vec{u}',\vec{v})+(\vec{u}'',\vec{v})$ + (linearity in first argument) +\item $(\vec{u},\vec{u})\geq 0 \text{, } ``=" \Leftrightarrow \vec{u}=0$ + (positive definite) +\end{itemize} +for $\vec{u},\vec{v}\in V$ and $\lambda\in K$. +Taking the complex conjugate $(\cdot)^*$ is the map from $K\ni z=a+bi\mapsto a-bi=z^*\in K$. +\end{definition} + +\begin{remark} +Due to conjugate symmetry, linearity in the first argument results in conjugate linearity (also termed antilinearity) in the second argument. +This is called a sesquilinear form. +\begin{equation} +(\vec{u},\lambda(\vec{v}'+\vec{v}''))=(\lambda(\vec{v}'+\vec{v}''),\vec{u})^*= +\lambda^*(\vec{v}',\vec{u})^*+\lambda^*(\vec{v}'',\vec{u})^*= +\lambda^*(\vec{u},\vec{v}')+\lambda^*(\vec{u},\vec{v}'') +\end{equation} + +The inner product $(\cdot,\cdot)$ provides a mapping +\begin{equation} +V\rightarrow V^{\dagger}:\vec{v}\mapsto \varphi_{\vec{v}} +\quad +\text{ defined by } +\quad +\varphi_{\vec{v}}(\vec{u})=(\vec{v},\vec{u}) \text{ .} +\end{equation} +Since the inner product is linear in the first argument, the same is true for the defined mapping. +\begin{equation} +\lambda(\vec{u}+\vec{v}) \mapsto +\varphi_{\lambda(\vec{u}+\vec{v})}= +\lambda\varphi_{\vec{u}}+\lambda\varphi_{\vec{v}}\\ +\end{equation} +The kernel is $\vec{v}=0$, structural identity (isomorphism) of $V$ and $V^{\dagger}$ is . + +In physics and matrix algebra, the inner product is often defined with linearity in the second argument and conjugate linearity in the first argument. +This allows to express the inner product $(\vec{u},\vec{v})$ as a product of vector $\vec{v}$ with a dual vector or linear functional of dual space $V^{\dagger}$ +\begin{equation} +(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}(\vec{u})\vec{v} +\text{ CHECK ! ! !} +\end{equation} +or the conjugate transpose in matrix formalism +\begin{equation} +(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}\vec{v} \text{ .} +\end{equation} +In doing so, the conjugate transpose is associated with the dual vector. +\end{remark} + +\begin{definition} +If $\vec{u}\in U$, $\vec{v}\in V$ are vectors within the respective vector spaces and $\vec{\varphi}^{\dagger}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$, +the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{\varphi}^{\dagger}$ and $\vec{u}$, +which constitutes a map $A:V\rightarrow U$ by +\begin{equation} +\vec{v}\mapsto\vec{\varphi}^{\dagger}(\vec{v})\vec{u} +\text{ ,} +\end{equation} +where $\vec{\varphi}^{\dagger}(\vec{v})$ denotes the linear functional $\vec{\varphi}^{\dagger}\in V^{\dagger}$ on $V$ when evaluated at $\vec{v}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. + +In matrix formalism, with respect to a given basis ${\vec{e}_i}$ of $\vec{u}$ and ${\vec{e}'_i}$ of $\vec{v}$, +if $\vec{u}=\sum_i^m \vec{e}_iu_i$ and $\vec{v}=\sum_i^n\vec{e}'_iv_i$, +the outer product can be written as matrix $A$ as +\begin{equation} +\vec{u}\otimes\vec{v}=A=\left( +\begin{array}{c c c c} +u_1v_1 & u_1v_2 & \cdots & u_1v_n\\ +u_2v_1 & u_2v_2 & \cdots & u_2v_n\\ +\vdots & \vdots & \ddots & \vdots\\ +u_mv_1 & u_mv_2 & \cdots & u_mv_n\\ +\end{array} +\right) +\text{ .} +\end{equation} +\end{definition} +\begin{remark} +The matrix can be equivalently obtained by matrix multiplication: +\begin{equation} +\vec{u}\otimes\vec{v}=\vec{u}\vec{v}^{\dagger} \text{ ,} +\end{equation} +if $\vec{u}$ and $\vec{v}$ are represented as $m\times 1$ and $n\times 1$ column vectors, respectively. +Here, $\vec{v}^{\dagger}$ represents the conjugate transpose of $\vec{v}$. +By definition, and as can be easily seen in the matrix representation, the following identity holds: +\begin{equation} +(\vec{u}\otimes\vec{v})\vec{w}=\vec{u}(\vec{v},\vec{w}) +\end{equation} +\end{remark} + \section{Spherical coordinates} \section{Fourier integrals}