X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath_app.tex;h=79e4ec996d602cf18cf629e0cd0ce6ee4bcfbbc8;hp=001ed2b5cf9abaa7fb96b811be1c0c9af853759c;hb=dcfe9181a03b1eff2ec41d207241647e7392f2fd;hpb=8ef90b6c5d602acae2f9788f01b5fea7531c8fb5 diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index 001ed2b..79e4ec9 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -40,18 +40,48 @@ The addition of two vectors is called vector addition. \label{math_app:product} \begin{definition} -The inner product ... +The inner product on a vector space $V$ over $K$ is a map $(\cdot,\cdot):V\times V \rightarrow K$, which satisfies +\begin{itemize} +\item $(\vec{u},\vec{v})=(\vec{v},\vec{u})^*$ + (conjugate symmetry, symmetric for $K=\mathbb{R}$) +\item $(\lambda\vec{u},\vec{v})=\lambda(\vec{u},\vec{v})$ and + $(\vec{u}'+\vec{u}'',\vec{v})=(\vec{u}',\vec{v})+(\vec{u}'',\vec{v})$ + (linearity in first argument) +\item $(\vec{u},\vec{u})\geq 0 \text{, } ``=" \Leftrightarrow \vec{u}=0$ + (positive definite) +\end{itemize} +for $\vec{u},\vec{v}\in V$ and $\lambda\in K$. \end{definition} +\begin{remark} +Due to conjugate symmetry, linearity in the first argument results in conjugate linearity (also termed antilinearity) in the second argument. +This is called a sesquilinear form. +\begin{equation} +(\vec{u},\lambda(\vec{v}'+\vec{v}''))=(\lambda(\vec{v}'+\vec{v}''),\vec{u})^*= +\lambda^*(\vec{v}',\vec{u})^*+\lambda^*(\vec{v}'',\vec{u})^*= +\lambda^*(\vec{u},\vec{v}')+\lambda^*(\vec{u},\vec{v}'') +\end{equation} +In physics and matrix algebra, the inner product is often defined with linearity in the second argument and conjugate linearity in the first argument. +This allows to express the inner product $(\vec{u},\vec{v})$ as a product of vector $\vec{v}$ with the dual vector or linear functional of dual space $V^{\dagger}$ +\begin{equation} +(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}(\vec{u})\vec{v} +\end{equation} +or the conjugate transpose in matrix formalism +\begin{equation} +(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}\vec{v} \text{ .} +\end{equation} +In doing so, conjugacy is associated with duality. +\end{remark} + \begin{definition} -If $\vec{u}\in U$, $\vec{v}\in V$ and $\vec{v}^{\dagger}\in V^{\dagger}$ are vectors within the respective vector spaces and $V^{\dagger}$ is the dual space of $V$, -the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{v}^{\dagger}$ and $\vec{u}$, +If $\vec{u}\in U$, $\vec{v}\in V$ are vectors within the respective vector spaces and $\vec{y}^{\dagger}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$, +the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{y}^{\dagger}$ and $\vec{u}$, which constitutes a map $A:V\rightarrow U$ by \begin{equation} -\vec{v}\mapsto\vec{v}^{\dagger}(\vec{v})\vec{u} +\vec{v}\mapsto\vec{y}^{\dagger}(\vec{v})\vec{u} \text{ ,} \end{equation} -where $\vec{v}^{\dagger}(\vec{v})$ denotes the linear functional $\vec{v}^{\dagger}\in V^{\dagger}$ on $V$ when evaluated at $\vec{v}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. +where $\vec{y}^{\dagger}(\vec{v})$ denotes the linear functional $\vec{y}^{\dagger}\in V^{\dagger}$ on $V$ when evaluated at $\vec{v}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. In matrix formalism, with respect to a given basis ${\vec{e}_i}$ of $\vec{u}$ and ${\vec{e}'_i}$ of $\vec{v}$, if $\vec{u}=\sum_i^m \vec{e}_iu_i$ and $\vec{v}=\sum_i^n\vec{e}'_iv_i$,