X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath_app.tex;h=79e4ec996d602cf18cf629e0cd0ce6ee4bcfbbc8;hp=e6e935e02ab94884ffacec27651f38c564975a09;hb=dcfe9181a03b1eff2ec41d207241647e7392f2fd;hpb=df550a4ec6a24e44ceba6ccf4111722940040c1d diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index e6e935e..79e4ec9 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -1,6 +1,8 @@ \chapter{Mathematical tools} -\section{Vector space} +\section{Vector algebra} + +\subsection{Vector space} \label{math_app:vector_space} \begin{definition} @@ -32,6 +34,83 @@ Due to the additive abelian group, the following properties are additionally val The addition of two vectors is called vector addition. \end{remark} +\subsection{Dual space} + +\subsection{Inner and outer product} +\label{math_app:product} + +\begin{definition} +The inner product on a vector space $V$ over $K$ is a map $(\cdot,\cdot):V\times V \rightarrow K$, which satisfies +\begin{itemize} +\item $(\vec{u},\vec{v})=(\vec{v},\vec{u})^*$ + (conjugate symmetry, symmetric for $K=\mathbb{R}$) +\item $(\lambda\vec{u},\vec{v})=\lambda(\vec{u},\vec{v})$ and + $(\vec{u}'+\vec{u}'',\vec{v})=(\vec{u}',\vec{v})+(\vec{u}'',\vec{v})$ + (linearity in first argument) +\item $(\vec{u},\vec{u})\geq 0 \text{, } ``=" \Leftrightarrow \vec{u}=0$ + (positive definite) +\end{itemize} +for $\vec{u},\vec{v}\in V$ and $\lambda\in K$. +\end{definition} + +\begin{remark} +Due to conjugate symmetry, linearity in the first argument results in conjugate linearity (also termed antilinearity) in the second argument. +This is called a sesquilinear form. +\begin{equation} +(\vec{u},\lambda(\vec{v}'+\vec{v}''))=(\lambda(\vec{v}'+\vec{v}''),\vec{u})^*= +\lambda^*(\vec{v}',\vec{u})^*+\lambda^*(\vec{v}'',\vec{u})^*= +\lambda^*(\vec{u},\vec{v}')+\lambda^*(\vec{u},\vec{v}'') +\end{equation} +In physics and matrix algebra, the inner product is often defined with linearity in the second argument and conjugate linearity in the first argument. +This allows to express the inner product $(\vec{u},\vec{v})$ as a product of vector $\vec{v}$ with the dual vector or linear functional of dual space $V^{\dagger}$ +\begin{equation} +(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}(\vec{u})\vec{v} +\end{equation} +or the conjugate transpose in matrix formalism +\begin{equation} +(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}\vec{v} \text{ .} +\end{equation} +In doing so, conjugacy is associated with duality. +\end{remark} + +\begin{definition} +If $\vec{u}\in U$, $\vec{v}\in V$ are vectors within the respective vector spaces and $\vec{y}^{\dagger}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$, +the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{y}^{\dagger}$ and $\vec{u}$, +which constitutes a map $A:V\rightarrow U$ by +\begin{equation} +\vec{v}\mapsto\vec{y}^{\dagger}(\vec{v})\vec{u} +\text{ ,} +\end{equation} +where $\vec{y}^{\dagger}(\vec{v})$ denotes the linear functional $\vec{y}^{\dagger}\in V^{\dagger}$ on $V$ when evaluated at $\vec{v}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. + +In matrix formalism, with respect to a given basis ${\vec{e}_i}$ of $\vec{u}$ and ${\vec{e}'_i}$ of $\vec{v}$, +if $\vec{u}=\sum_i^m \vec{e}_iu_i$ and $\vec{v}=\sum_i^n\vec{e}'_iv_i$, +the outer product can be written as matrix $A$ as +\begin{equation} +\vec{u}\otimes\vec{v}=A=\left( +\begin{array}{c c c c} +u_1v_1 & u_1v_2 & \cdots & u_1v_n\\ +u_2v_1 & u_2v_2 & \cdots & u_2v_n\\ +\vdots & \vdots & \ddots & \vdots\\ +u_mv_1 & u_mv_2 & \cdots & u_mv_n\\ +\end{array} +\right) +\text{ .} +\end{equation} +\end{definition} +\begin{remark} +The matrix can be equivalently obtained by matrix multiplication: +\begin{equation} +\vec{u}\otimes\vec{v}=\vec{u}\vec{v}^{\dagger} \text{ ,} +\end{equation} +if $\vec{u}$ and $\vec{v}$ are represented as $m\times 1$ and $n\times 1$ column vectors, respectively. +Here, $\vec{v}^{\dagger}$ represents the conjugate transpose of $\vec{v}$. +By definition, and as can be easily seen in the matrix representation, the following identity holds: +\begin{equation} +(\vec{u}\otimes\vec{v})\vec{w}=\vec{u}(\vec{v},\vec{w}) +\end{equation} +\end{remark} + \section{Spherical coordinates} \section{Fourier integrals}