X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath_app.tex;h=e3417bdadbfc503842a193833540682248b02294;hp=5f2b0ca8cfbb9232890e2b24a15dea77472f05c2;hb=41de34392edb34632ebcf19bfa55bdb746f2c70a;hpb=52293c68b82f2108ec3346435de0561e0236e466 diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index 5f2b0ca..e3417bd 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -5,7 +5,7 @@ \subsection{Vector space} \label{math_app:vector_space} -\begin{definition} +\begin{definition}[Vector space] A vector space $V$ over a field $(K,+,\cdot)$ is an additive abelian group $(V,+)$ and an additionally defined scalar multiplication of $\vec{v}\in V$ by $\lambda\in K$, which fullfills: \begin{itemize} \item $\forall \vec{v} \, \exists 1$ with: $\vec{v}1=\vec{v}$ @@ -19,6 +19,7 @@ A vector space $V$ over a field $(K,+,\cdot)$ is an additive abelian group $(V,+ \end{itemize} The elements $\vec{v}\in V$ are called vectors. \end{definition} + \begin{remark} Due to the additive abelian group, the following properties are additionally valid: \begin{itemize} @@ -36,7 +37,7 @@ The addition of two vectors is called vector addition. \subsection{Dual space} -\begin{definition} +\begin{definition}[Dual space] The dual space $V^{\dagger}$ of vector space $V$ over field $K$ is defined as the set of all linear maps from the vector space $V$ into its field $K$ \begin{equation} \varphi:V\rightarrow K \text{ .} @@ -55,13 +56,9 @@ The map $V^{\dagger}\times V \rightarrow K: [\varphi,\vec{v}]=\varphi(\vec{v})$ \subsection{Inner and outer product} \label{math_app:product} -\begin{definition} +\begin{definition}[Inner product] The inner product on a vector space $V$ over $K$ is a map -\begin{equation} -(\cdot,\cdot):V\times V \rightarrow K -\text{ ,} -\end{equation} -which satisfies +$(\cdot,\cdot):V\times V \rightarrow K$, which satisfies \begin{itemize} \item $(\vec{u},\vec{v})=(\vec{v},\vec{u})^*$ (conjugate symmetry, symmetric for $K=\mathbb{R}$) @@ -72,7 +69,10 @@ which satisfies (positive definite) \end{itemize} for $\vec{u},\vec{v}\in V$ and $\lambda\in K$. -Taking the complex conjugate $(\cdot)^*$ is the map from $K\ni z=a+bi\mapsto a-bi=z^*\in K$. +Taking the complex conjugate $(\cdot)^*$ is the map from +\begin{equation} +z=a+bi\mapsto z^*=a-bi \text{, } z,z^*\in K \text{.} +\end{equation} \end{definition} \begin{remark} @@ -85,7 +85,7 @@ Due to conjugate symmetry, linearity in the first argument results in conjugate This is called a sesquilinear form. If $K=\mathbb{R}$, conjugate symmetry reduces to symmetry and the sesquilinear form gets a bilinear form. -The inner product $(\cdot,\cdot)$ provides a mapping +Furtermore, the inner product $(\cdot,\cdot)$ provides a mapping \begin{equation} V\rightarrow V^{\dagger}:\vec{v}\mapsto \varphi_{\vec{v}} \quad @@ -103,21 +103,24 @@ If the inner product is nondegenerate, i.e.\ $\forall\vec{u}\, (\vec{v},\vec{u} Since the dimension of $V$ and $V^{\dagger}$ is equal, it is additionally surjective. Then, $V$ is isomorphic to $V^{\dagger}$. Vector $\vec{v}^{\dagger}\equiv \varphi_{\vec{v}}\in V^{\dagger}$ is said to be the dual vector of $\vec{v}\in V$. +The dual pairing $[\vec{v}^{\dagger},\vec{u}]=[\varphi_{\vec{v}},\vec{u}]=\varphi_{\vec{v}}(\vec{u})$ is associated with the inner product $(\vec{v},\vec{u})$. -In physics and matrix algebra, the inner product is often defined with linearity in the second argument and conjugate linearity in the first argument. -This allows to express the inner product $(\vec{u},\vec{v})$ as a product of vector $\vec{v}$ with a dual vector or linear functional of dual space $V^{\dagger}$ +Now, in physics and matrix algebra, the inner product is often defined with linearity in the second argument and conjugate linearity in the first argument. +In this case, the antilinearity property is assigned to element $\varphi_{\vec{v}}=\vec{v}^{\dagger}$ of dual space indicating an isomorphism of $V$ to the conjugate complex of its dual space. \begin{equation} -(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}(\vec{u})\vec{v} -\text{ CHECK ! ! !} +[(\lambda\vec{v})^{\dagger},\vec{u}]= +[\varphi_{\lambda\vec{v}},\vec{u}]= +\varphi_{\lambda\vec{v}}(\vec{u})= +\lambda^*\varphi_{\vec{v}}(\vec{u})= +\lambda^*(\vec{v},\vec{u}) \end{equation} -or the conjugate transpose in matrix formalism +According to this, in matrix formalism, the dual vector is associated with the conjugate transpose. \begin{equation} -(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}\vec{v} \text{ .} +(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}\vec{v} \end{equation} -In doing so, the conjugate transpose is associated with the dual vector. \end{remark} -\begin{definition} +\begin{definition}[Outer product] If $\vec{u}\in U$, $\vec{v}\in V$ are vectors within the respective vector spaces and $\vec{\varphi}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$, the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{\varphi}$ and $\vec{u}$, which constitutes a map $A:V\rightarrow U$ by