X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath_app.tex;h=f1ac777ea2a51d8168b426991d5fca0a05b3e8c1;hp=687f928df9145c3377402563658d5001d1090de2;hb=bc36ee251b928962cf2431d6582e5a5dd9cca682;hpb=f74a53b2acb28533ef22dbf3adb0c97dbb5dd958 diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index 687f928..f1ac777 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -5,7 +5,7 @@ \subsection{Vector space} \label{math_app:vector_space} -\begin{definition} +\begin{definition}[Vector space] A vector space $V$ over a field $(K,+,\cdot)$ is an additive abelian group $(V,+)$ and an additionally defined scalar multiplication of $\vec{v}\in V$ by $\lambda\in K$, which fullfills: \begin{itemize} \item $\forall \vec{v} \, \exists 1$ with: $\vec{v}1=\vec{v}$ @@ -19,6 +19,7 @@ A vector space $V$ over a field $(K,+,\cdot)$ is an additive abelian group $(V,+ \end{itemize} The elements $\vec{v}\in V$ are called vectors. \end{definition} + \begin{remark} Due to the additive abelian group, the following properties are additionally valid: \begin{itemize} @@ -36,7 +37,7 @@ The addition of two vectors is called vector addition. \subsection{Dual space} -\begin{definition} +\begin{definition}[Dual space] The dual space $V^{\dagger}$ of vector space $V$ over field $K$ is defined as the set of all linear maps from the vector space $V$ into its field $K$ \begin{equation} \varphi:V\rightarrow K \text{ .} @@ -55,13 +56,9 @@ The map $V^{\dagger}\times V \rightarrow K: [\varphi,\vec{v}]=\varphi(\vec{v})$ \subsection{Inner and outer product} \label{math_app:product} -\begin{definition} +\begin{definition}[Inner product] The inner product on a vector space $V$ over $K$ is a map -\begin{equation} -(\cdot,\cdot):V\times V \rightarrow K -\text{ ,} -\end{equation} -which satisfies +$(\cdot,\cdot):V\times V \rightarrow K$, which satisfies \begin{itemize} \item $(\vec{u},\vec{v})=(\vec{v},\vec{u})^*$ (conjugate symmetry, symmetric for $K=\mathbb{R}$) @@ -72,25 +69,31 @@ which satisfies (positive definite) \end{itemize} for $\vec{u},\vec{v}\in V$ and $\lambda\in K$. -Taking the complex conjugate $(\cdot)^*$ is the map from $K\ni z=a+bi\mapsto a-bi=z^*\in K$. +Taking the complex conjugate $(\cdot)^*$ is the map from +\begin{equation} +z=a+bi\mapsto z^*=a-bi \text{, } z,z^*\in K \text{.} +\end{equation} \end{definition} \begin{remark} +\label{math_app:ip_remark} Due to conjugate symmetry, linearity in the first argument results in conjugate linearity (also termed antilinearity) in the second argument. -This is called a sesquilinear form. \begin{equation} (\vec{u},\lambda(\vec{v}'+\vec{v}''))=(\lambda(\vec{v}'+\vec{v}''),\vec{u})^*= \lambda^*(\vec{v}',\vec{u})^*+\lambda^*(\vec{v}'',\vec{u})^*= \lambda^*(\vec{u},\vec{v}')+\lambda^*(\vec{u},\vec{v}'') \end{equation} +This is called a sesquilinear form. +If $K=\mathbb{R}$, conjugate symmetry reduces to symmetry and the sesquilinear form gets a bilinear form. -The inner product $(\cdot,\cdot)$ provides a mapping +Furtermore, the inner product $(\cdot,\cdot)$ provides a mapping \begin{equation} V\rightarrow V^{\dagger}:\vec{v}\mapsto \varphi_{\vec{v}} \quad \text{ defined by } \quad \varphi_{\vec{v}}(\vec{u})=(\vec{v},\vec{u}) \text{ .} +\label{eq:ip_mapping} \end{equation} Since the inner product is linear in the first argument, the same is true for the defined mapping. \begin{equation} @@ -98,57 +101,81 @@ Since the inner product is linear in the first argument, the same is true for th \varphi_{\lambda(\vec{u}+\vec{v})}= \lambda\varphi_{\vec{u}}+\lambda\varphi_{\vec{v}}\\ \end{equation} -The kernel is $\vec{v}=0$, structural identity (isomorphism) of $V$ and $V^{\dagger}$ is . +If the inner product is nondegenerate, i.e.\ $\forall\vec{u}\, (\vec{v},\vec{u})=0 \Leftrightarrow \vec{v}=0$, as it applies for the scalar product for instance, the mapping is injective. +Since the dimension of $V$ and $V^{\dagger}$ is equal, it is additionally surjective. +Then, $V$ is isomorphic to $V^{\dagger}$. +Vector $\vec{v}^{\dagger}\equiv \varphi_{\vec{v}}\in V^{\dagger}$ is said to be the dual vector of $\vec{v}\in V$. +The dual pairing $[\vec{v}^{\dagger},\vec{u}]=[\varphi_{\vec{v}},\vec{u}]=\varphi_{\vec{v}}(\vec{u})$ is associated with the inner product $(\vec{v},\vec{u})$. + +Now, in physics and matrix algebra, the inner product is often defined with linearity in the second argument and conjugate linearity in the first argument. +In this case, the antilinearity property is assigned to the element $\varphi_{\vec{v}}=\vec{v}^{\dagger}$ of dual space +\begin{equation} +\varphi_{\lambda\vec{v}}(\vec{u})= +(\lambda\vec{v},\vec{u})= +\lambda^*(\vec{v},\vec{u})= +\lambda^*\varphi_{\vec{v}}(\vec{u}) +\end{equation} +and $V$ is found to be isomorphic to the conjugate complex of its dual space. +Then, the inner product $(\vec{v},\vec{u})$ is associated with the dual pairing of element $\vec{u}$ of the vector space and $\vec{v}^{\dagger}$ of its conjugate complex dual space +\begin{equation} +(\vec{v},\vec{u})\rightarrow +[\varphi_{\vec{v}},\vec{u}]= +[\vec{v}^{\dagger},\vec{u}] +\text{ .} +\end{equation} -In physics and matrix algebra, the inner product is often defined with linearity in the second argument and conjugate linearity in the first argument. -This allows to express the inner product $(\vec{u},\vec{v})$ as a product of vector $\vec{v}$ with a dual vector or linear functional of dual space $V^{\dagger}$ +The standard sesquilinear form $\langle\cdot,\cdot\rangle$, also called Hermitian form, on $\mathbb{C}^n$ and linearity in the second argument, is given by \begin{equation} -(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}(\vec{u})\vec{v} -\text{ CHECK ! ! !} +\langle\vec{v},\vec{u}\rangle=\sum_i^nv_i^*u_i +\text{ .} \end{equation} -or the conjugate transpose in matrix formalism +In this case, in matrix formalism, the inner product is reformulated \begin{equation} -(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}\vec{v} \text{ .} +(\vec{v},\vec{u}) \rightarrow \vec{v}^{\dagger}\vec{u} +\text{ ,} \end{equation} -In doing so, the conjugate transpose is associated with the dual vector. +where the dual vector is associated with the conjugate transpose $\vec{v}^{\dagger}$ of the corresponding vector $\vec{v}$ +and the usual rules of matrix multiplication. \end{remark} -\begin{definition} -If $\vec{u}\in U$, $\vec{v}\in V$ are vectors within the respective vector spaces and $\vec{\varphi}^{\dagger}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$, -the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{\varphi}^{\dagger}$ and $\vec{u}$, +\begin{definition}[Outer product] +If $\vec{u}\in U$, $\vec{v},\vec{w}\in V$ are vectors within the respective vector spaces and $\varphi_{\vec{v}}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$ (determined in some way by $\vec{v}$), +the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\varphi_{\vec{v}}$ and $\vec{u}$, which constitutes a map $A:V\rightarrow U$ by \begin{equation} -\vec{v}\mapsto\vec{\varphi}^{\dagger}(\vec{v})\vec{u} +\vec{w}\mapsto\varphi_{\vec{v}}(\vec{w})\vec{u} \text{ ,} \end{equation} -where $\vec{\varphi}^{\dagger}(\vec{v})$ denotes the linear functional $\vec{\varphi}^{\dagger}\in V^{\dagger}$ on $V$ when evaluated at $\vec{v}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. +where $\varphi_{\vec{v}}(\vec{w})$ denotes the linear functional $\varphi_{\vec{v}}\in V^{\dagger}$ on $V$ when evaluated at some $\vec{w}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. +\end{definition} -In matrix formalism, with respect to a given basis ${\vec{e}_i}$ of $\vec{u}$ and ${\vec{e}'_i}$ of $\vec{v}$, +\begin{remark} + +In matrix formalism, if $\varphi_{\vec{v}}$ is defined as in \eqref{eq:ip_mapping} and if $\vec{u}=\sum_i^m \vec{e}_iu_i$ and $\vec{v}=\sum_i^n\vec{e}'_iv_i$, -the outer product can be written as matrix $A$ as +the standard form of the outer product can be written as the matrix \begin{equation} \vec{u}\otimes\vec{v}=A=\left( \begin{array}{c c c c} -u_1v_1 & u_1v_2 & \cdots & u_1v_n\\ -u_2v_1 & u_2v_2 & \cdots & u_2v_n\\ +u_1v_1^* & u_1v_2^* & \cdots & u_1v_n^*\\ +u_2v_1^* & u_2v_2^* & \cdots & u_2v_n^*\\ \vdots & \vdots & \ddots & \vdots\\ -u_mv_1 & u_mv_2 & \cdots & u_mv_n\\ +u_mv_1^* & u_mv_2^* & \cdots & u_mv_n^*\\ \end{array} \right) -\text{ .} +\text{ ,} \end{equation} -\end{definition} -\begin{remark} -The matrix can be equivalently obtained by matrix multiplication: +which can be equivalently obtained by the rulrs of matrix multiplication \begin{equation} \vec{u}\otimes\vec{v}=\vec{u}\vec{v}^{\dagger} \text{ ,} \end{equation} if $\vec{u}$ and $\vec{v}$ are represented as $m\times 1$ and $n\times 1$ column vectors, respectively. -Here, $\vec{v}^{\dagger}$ represents the conjugate transpose of $\vec{v}$. -By definition, and as can be easily seen in the matrix representation, the following identity holds: +Here, again, $\vec{v}^{\dagger}$ represents the conjugate transpose of $\vec{v}$. +By definition, and as can be easily seen in matrix representation, the identity \begin{equation} (\vec{u}\otimes\vec{v})\vec{w}=\vec{u}(\vec{v},\vec{w}) \end{equation} +holds. \end{remark} \section{Spherical coordinates}