X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath_app.tex;h=f1ac777ea2a51d8168b426991d5fca0a05b3e8c1;hp=e3417bdadbfc503842a193833540682248b02294;hb=bc36ee251b928962cf2431d6582e5a5dd9cca682;hpb=41de34392edb34632ebcf19bfa55bdb746f2c70a diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index e3417bd..f1ac777 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -76,6 +76,7 @@ z=a+bi\mapsto z^*=a-bi \text{, } z,z^*\in K \text{.} \end{definition} \begin{remark} +\label{math_app:ip_remark} Due to conjugate symmetry, linearity in the first argument results in conjugate linearity (also termed antilinearity) in the second argument. \begin{equation} (\vec{u},\lambda(\vec{v}'+\vec{v}''))=(\lambda(\vec{v}'+\vec{v}''),\vec{u})^*= @@ -92,6 +93,7 @@ V\rightarrow V^{\dagger}:\vec{v}\mapsto \varphi_{\vec{v}} \text{ defined by } \quad \varphi_{\vec{v}}(\vec{u})=(\vec{v},\vec{u}) \text{ .} +\label{eq:ip_mapping} \end{equation} Since the inner product is linear in the first argument, the same is true for the defined mapping. \begin{equation} @@ -106,33 +108,52 @@ Vector $\vec{v}^{\dagger}\equiv \varphi_{\vec{v}}\in V^{\dagger}$ is said to be The dual pairing $[\vec{v}^{\dagger},\vec{u}]=[\varphi_{\vec{v}},\vec{u}]=\varphi_{\vec{v}}(\vec{u})$ is associated with the inner product $(\vec{v},\vec{u})$. Now, in physics and matrix algebra, the inner product is often defined with linearity in the second argument and conjugate linearity in the first argument. -In this case, the antilinearity property is assigned to element $\varphi_{\vec{v}}=\vec{v}^{\dagger}$ of dual space indicating an isomorphism of $V$ to the conjugate complex of its dual space. +In this case, the antilinearity property is assigned to the element $\varphi_{\vec{v}}=\vec{v}^{\dagger}$ of dual space \begin{equation} -[(\lambda\vec{v})^{\dagger},\vec{u}]= -[\varphi_{\lambda\vec{v}},\vec{u}]= \varphi_{\lambda\vec{v}}(\vec{u})= -\lambda^*\varphi_{\vec{v}}(\vec{u})= -\lambda^*(\vec{v},\vec{u}) +(\lambda\vec{v},\vec{u})= +\lambda^*(\vec{v},\vec{u})= +\lambda^*\varphi_{\vec{v}}(\vec{u}) \end{equation} -According to this, in matrix formalism, the dual vector is associated with the conjugate transpose. +and $V$ is found to be isomorphic to the conjugate complex of its dual space. +Then, the inner product $(\vec{v},\vec{u})$ is associated with the dual pairing of element $\vec{u}$ of the vector space and $\vec{v}^{\dagger}$ of its conjugate complex dual space \begin{equation} -(\vec{u},\vec{v}) \rightarrow \vec{u}^{\dagger}\vec{v} +(\vec{v},\vec{u})\rightarrow +[\varphi_{\vec{v}},\vec{u}]= +[\vec{v}^{\dagger},\vec{u}] +\text{ .} +\end{equation} + +The standard sesquilinear form $\langle\cdot,\cdot\rangle$, also called Hermitian form, on $\mathbb{C}^n$ and linearity in the second argument, is given by +\begin{equation} +\langle\vec{v},\vec{u}\rangle=\sum_i^nv_i^*u_i +\text{ .} +\end{equation} +In this case, in matrix formalism, the inner product is reformulated +\begin{equation} +(\vec{v},\vec{u}) \rightarrow \vec{v}^{\dagger}\vec{u} +\text{ ,} \end{equation} +where the dual vector is associated with the conjugate transpose $\vec{v}^{\dagger}$ of the corresponding vector $\vec{v}$ +and the usual rules of matrix multiplication. \end{remark} \begin{definition}[Outer product] -If $\vec{u}\in U$, $\vec{v}\in V$ are vectors within the respective vector spaces and $\vec{\varphi}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$, -the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{\varphi}$ and $\vec{u}$, +If $\vec{u}\in U$, $\vec{v},\vec{w}\in V$ are vectors within the respective vector spaces and $\varphi_{\vec{v}}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$ (determined in some way by $\vec{v}$), +the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\varphi_{\vec{v}}$ and $\vec{u}$, which constitutes a map $A:V\rightarrow U$ by \begin{equation} -\vec{v}\mapsto\vec{\varphi}(\vec{v})\vec{u} +\vec{w}\mapsto\varphi_{\vec{v}}(\vec{w})\vec{u} \text{ ,} \end{equation} -where $\vec{\varphi}(\vec{v})$ denotes the linear functional $\vec{\varphi}\in V^{\dagger}$ on $V$ when evaluated at $\vec{v}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. +where $\varphi_{\vec{v}}(\vec{w})$ denotes the linear functional $\varphi_{\vec{v}}\in V^{\dagger}$ on $V$ when evaluated at some $\vec{w}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. +\end{definition} + +\begin{remark} -In matrix formalism, with respect to a given basis ${\vec{e}_i}$ of $\vec{u}$ and ${\vec{e}'_i}$ of $\vec{v}$, +In matrix formalism, if $\varphi_{\vec{v}}$ is defined as in \eqref{eq:ip_mapping} and if $\vec{u}=\sum_i^m \vec{e}_iu_i$ and $\vec{v}=\sum_i^n\vec{e}'_iv_i$, -the outer product can be written as matrix $A$ as +the standard form of the outer product can be written as the matrix \begin{equation} \vec{u}\otimes\vec{v}=A=\left( \begin{array}{c c c c} @@ -142,20 +163,19 @@ u_2v_1^* & u_2v_2^* & \cdots & u_2v_n^*\\ u_mv_1^* & u_mv_2^* & \cdots & u_mv_n^*\\ \end{array} \right) -\text{ .} +\text{ ,} \end{equation} -\end{definition} -\begin{remark} -The matrix can be equivalently obtained by matrix multiplication: +which can be equivalently obtained by the rulrs of matrix multiplication \begin{equation} \vec{u}\otimes\vec{v}=\vec{u}\vec{v}^{\dagger} \text{ ,} \end{equation} if $\vec{u}$ and $\vec{v}$ are represented as $m\times 1$ and $n\times 1$ column vectors, respectively. -Here, $\vec{v}^{\dagger}$ represents the conjugate transpose of $\vec{v}$. -By definition, and as can be easily seen in the matrix representation, the following identity holds: +Here, again, $\vec{v}^{\dagger}$ represents the conjugate transpose of $\vec{v}$. +By definition, and as can be easily seen in matrix representation, the identity \begin{equation} (\vec{u}\otimes\vec{v})\vec{w}=\vec{u}(\vec{v},\vec{w}) \end{equation} +holds. \end{remark} \section{Spherical coordinates}