X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath_app.tex;h=f1f0ae33169489ae2832a8f050395e120a9a8f6e;hp=5f2b0ca8cfbb9232890e2b24a15dea77472f05c2;hb=4069f849b1973e2eb9020fa2e190f93b56537c60;hpb=5898b999f5d72857fa765fd544262e7c0104042e diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index 5f2b0ca..f1f0ae3 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -5,7 +5,7 @@ \subsection{Vector space} \label{math_app:vector_space} -\begin{definition} +\begin{definition}[Vector space] A vector space $V$ over a field $(K,+,\cdot)$ is an additive abelian group $(V,+)$ and an additionally defined scalar multiplication of $\vec{v}\in V$ by $\lambda\in K$, which fullfills: \begin{itemize} \item $\forall \vec{v} \, \exists 1$ with: $\vec{v}1=\vec{v}$ @@ -36,7 +36,7 @@ The addition of two vectors is called vector addition. \subsection{Dual space} -\begin{definition} +\begin{definition}[Dual space] The dual space $V^{\dagger}$ of vector space $V$ over field $K$ is defined as the set of all linear maps from the vector space $V$ into its field $K$ \begin{equation} \varphi:V\rightarrow K \text{ .} @@ -55,13 +55,9 @@ The map $V^{\dagger}\times V \rightarrow K: [\varphi,\vec{v}]=\varphi(\vec{v})$ \subsection{Inner and outer product} \label{math_app:product} -\begin{definition} +\begin{definition}[Inner product] The inner product on a vector space $V$ over $K$ is a map -\begin{equation} -(\cdot,\cdot):V\times V \rightarrow K -\text{ ,} -\end{equation} -which satisfies +$(\cdot,\cdot):V\times V \rightarrow K$, which satisfies \begin{itemize} \item $(\vec{u},\vec{v})=(\vec{v},\vec{u})^*$ (conjugate symmetry, symmetric for $K=\mathbb{R}$) @@ -117,7 +113,7 @@ or the conjugate transpose in matrix formalism In doing so, the conjugate transpose is associated with the dual vector. \end{remark} -\begin{definition} +\begin{definition}[Outer product] If $\vec{u}\in U$, $\vec{v}\in V$ are vectors within the respective vector spaces and $\vec{\varphi}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$, the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{\varphi}$ and $\vec{u}$, which constitutes a map $A:V\rightarrow U$ by