X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fmath_app.tex;h=f1f0ae33169489ae2832a8f050395e120a9a8f6e;hp=687f928df9145c3377402563658d5001d1090de2;hb=4069f849b1973e2eb9020fa2e190f93b56537c60;hpb=f74a53b2acb28533ef22dbf3adb0c97dbb5dd958 diff --git a/physics_compact/math_app.tex b/physics_compact/math_app.tex index 687f928..f1f0ae3 100644 --- a/physics_compact/math_app.tex +++ b/physics_compact/math_app.tex @@ -5,7 +5,7 @@ \subsection{Vector space} \label{math_app:vector_space} -\begin{definition} +\begin{definition}[Vector space] A vector space $V$ over a field $(K,+,\cdot)$ is an additive abelian group $(V,+)$ and an additionally defined scalar multiplication of $\vec{v}\in V$ by $\lambda\in K$, which fullfills: \begin{itemize} \item $\forall \vec{v} \, \exists 1$ with: $\vec{v}1=\vec{v}$ @@ -36,7 +36,7 @@ The addition of two vectors is called vector addition. \subsection{Dual space} -\begin{definition} +\begin{definition}[Dual space] The dual space $V^{\dagger}$ of vector space $V$ over field $K$ is defined as the set of all linear maps from the vector space $V$ into its field $K$ \begin{equation} \varphi:V\rightarrow K \text{ .} @@ -55,13 +55,9 @@ The map $V^{\dagger}\times V \rightarrow K: [\varphi,\vec{v}]=\varphi(\vec{v})$ \subsection{Inner and outer product} \label{math_app:product} -\begin{definition} +\begin{definition}[Inner product] The inner product on a vector space $V$ over $K$ is a map -\begin{equation} -(\cdot,\cdot):V\times V \rightarrow K -\text{ ,} -\end{equation} -which satisfies +$(\cdot,\cdot):V\times V \rightarrow K$, which satisfies \begin{itemize} \item $(\vec{u},\vec{v})=(\vec{v},\vec{u})^*$ (conjugate symmetry, symmetric for $K=\mathbb{R}$) @@ -77,12 +73,13 @@ Taking the complex conjugate $(\cdot)^*$ is the map from $K\ni z=a+bi\mapsto a-b \begin{remark} Due to conjugate symmetry, linearity in the first argument results in conjugate linearity (also termed antilinearity) in the second argument. -This is called a sesquilinear form. \begin{equation} (\vec{u},\lambda(\vec{v}'+\vec{v}''))=(\lambda(\vec{v}'+\vec{v}''),\vec{u})^*= \lambda^*(\vec{v}',\vec{u})^*+\lambda^*(\vec{v}'',\vec{u})^*= \lambda^*(\vec{u},\vec{v}')+\lambda^*(\vec{u},\vec{v}'') \end{equation} +This is called a sesquilinear form. +If $K=\mathbb{R}$, conjugate symmetry reduces to symmetry and the sesquilinear form gets a bilinear form. The inner product $(\cdot,\cdot)$ provides a mapping \begin{equation} @@ -98,7 +95,10 @@ Since the inner product is linear in the first argument, the same is true for th \varphi_{\lambda(\vec{u}+\vec{v})}= \lambda\varphi_{\vec{u}}+\lambda\varphi_{\vec{v}}\\ \end{equation} -The kernel is $\vec{v}=0$, structural identity (isomorphism) of $V$ and $V^{\dagger}$ is . +If the inner product is nondegenerate, i.e.\ $\forall\vec{u}\, (\vec{v},\vec{u})=0 \Leftrightarrow \vec{v}=0$, as it applies for the scalar product for instance, the mapping is injective. +Since the dimension of $V$ and $V^{\dagger}$ is equal, it is additionally surjective. +Then, $V$ is isomorphic to $V^{\dagger}$. +Vector $\vec{v}^{\dagger}\equiv \varphi_{\vec{v}}\in V^{\dagger}$ is said to be the dual vector of $\vec{v}\in V$. In physics and matrix algebra, the inner product is often defined with linearity in the second argument and conjugate linearity in the first argument. This allows to express the inner product $(\vec{u},\vec{v})$ as a product of vector $\vec{v}$ with a dual vector or linear functional of dual space $V^{\dagger}$ @@ -113,15 +113,15 @@ or the conjugate transpose in matrix formalism In doing so, the conjugate transpose is associated with the dual vector. \end{remark} -\begin{definition} -If $\vec{u}\in U$, $\vec{v}\in V$ are vectors within the respective vector spaces and $\vec{\varphi}^{\dagger}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$, -the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{\varphi}^{\dagger}$ and $\vec{u}$, +\begin{definition}[Outer product] +If $\vec{u}\in U$, $\vec{v}\in V$ are vectors within the respective vector spaces and $\vec{\varphi}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$, +the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{\varphi}$ and $\vec{u}$, which constitutes a map $A:V\rightarrow U$ by \begin{equation} -\vec{v}\mapsto\vec{\varphi}^{\dagger}(\vec{v})\vec{u} +\vec{v}\mapsto\vec{\varphi}(\vec{v})\vec{u} \text{ ,} \end{equation} -where $\vec{\varphi}^{\dagger}(\vec{v})$ denotes the linear functional $\vec{\varphi}^{\dagger}\in V^{\dagger}$ on $V$ when evaluated at $\vec{v}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. +where $\vec{\varphi}(\vec{v})$ denotes the linear functional $\vec{\varphi}\in V^{\dagger}$ on $V$ when evaluated at $\vec{v}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$. In matrix formalism, with respect to a given basis ${\vec{e}_i}$ of $\vec{u}$ and ${\vec{e}'_i}$ of $\vec{v}$, if $\vec{u}=\sum_i^m \vec{e}_iu_i$ and $\vec{v}=\sum_i^n\vec{e}'_iv_i$, @@ -129,10 +129,10 @@ the outer product can be written as matrix $A$ as \begin{equation} \vec{u}\otimes\vec{v}=A=\left( \begin{array}{c c c c} -u_1v_1 & u_1v_2 & \cdots & u_1v_n\\ -u_2v_1 & u_2v_2 & \cdots & u_2v_n\\ +u_1v_1^* & u_1v_2^* & \cdots & u_1v_n^*\\ +u_2v_1^* & u_2v_2^* & \cdots & u_2v_n^*\\ \vdots & \vdots & \ddots & \vdots\\ -u_mv_1 & u_mv_2 & \cdots & u_mv_n\\ +u_mv_1^* & u_mv_2^* & \cdots & u_mv_n^*\\ \end{array} \right) \text{ .}