X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fqm.tex;h=6b8c6c407870ce93e2b3be4aaa3272f33a6848b9;hp=62a752c9db6ea39ecf7d9c79e8918ec8f31d1edf;hb=f4666008c79f572cbe7cbfa5f9a7e306bfa1637c;hpb=02f3a27ab8302fdb4255d9bb65dd7532a67b7d46 diff --git a/physics_compact/qm.tex b/physics_compact/qm.tex index 62a752c..6b8c6c4 100644 --- a/physics_compact/qm.tex +++ b/physics_compact/qm.tex @@ -1 +1,57 @@ -\chapter{Quantenmechanik} +\part{Quantum mechanics} + +\chapter{Fundamental concepts} + +\section{Variational method} +\label{sec:var_meth} + +The variational method constitutes a promising approach to estimate the ground-state energy $E_0$ of a system for which exact solutions are unknown. + +\begin{theorem}[Variational method] +Considering a {\em trial ket} $|\tilde 0\rangle$, which tries to imitate the true ground-state ket $|0\rangle$, it can be shown that +\begin{equation} +\tilde E\equiv\frac{\langle \tilde 0|H|\tilde 0\rangle}{\langle \tilde 0|\tilde 0\rangle} +\ge E_0 \textrm{ ,} +\end{equation} +i.e.\ an upper bound to the ground-state energy can be obtained by considering various kinds of $|\tilde 0\rangle$. +\end{theorem} + +\begin{proof} +The trial function $|\tilde 0\rangle$ is expanded by the exact energy eigenkets $|k\rangle$ with +\begin{equation} +H|k\rangle = E_k|k\rangle\text{ ,} +\qquad E_0\leq E_1\leq\ldots\leq E_k\ldots \text{ ,} +\qquad \langle k|k'\rangle=\delta_{k k'} \text{ ,} +\label{sec:vm_d} +\end{equation} +which are unknown but, still, form a complete and orthonormal basis set, to read +\begin{equation} +|\tilde 0\rangle = \vec{1} |\tilde 0\rangle + = \sum_{k=0}^{\infty} |k\rangle\langle k|\tilde 0\rangle +\text{ .} +\end{equation} +Since $\langle k|k'\rangle=\delta_{k k'}$, $H|k\rangle = E_k|k\rangle$ and $E_k\geq E_0$ (see \eqref{sec:vm_d}) +\begin{equation} +\tilde E= +\frac{\sum_{k,k'}\langle \tilde 0|k\rangle\langle k|H|k'\rangle\langle k'|\tilde 0\rangle} + {\sum_{k,k'}\langle \tilde 0|k\rangle\langle k|k'\rangle\langle k'|\tilde 0\rangle}= +\frac{\sum_k \left| \langle k|\tilde 0\rangle \right|^2 E_k} + {\sum_k \left| \langle k|\tilde 0\rangle \right|^2} \geq +\frac{\sum_k \left| \langle k|\tilde 0\rangle \right|^2 E_0} + {\sum_k \left| \langle k|\tilde 0\rangle \right|^2}=E_0 +\text{ ,} +\label{sec:vm_f} +\end{equation} +which proofs the variational theorem. +\end{proof} + +Moreover, equality in \eqref{sec:vm_f} is only achieved if $|\tilde 0\rangle$ coincides exactly with $|0\rangle$, i.e.\ if the coefficients $\langle k|\tilde 0\rangle$ all vanish for $k\neq 0$. + +\chapter{Quantum dynamics} + +\chapter{Relativistic quantum mechanics} + +285 Schulten + + +