X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fsolid.tex;h=01f545c984d26622bff40ebf8c614ee38efd8b18;hp=e4c23629af81992e5ca3603b66badbeb7f24daa6;hb=8d1d7674ef08669827ef927728256566d173a1b3;hpb=dc409c933867747e200594c1a0eab7512060e2c4 diff --git a/physics_compact/solid.tex b/physics_compact/solid.tex index e4c2362..01f545c 100644 --- a/physics_compact/solid.tex +++ b/physics_compact/solid.tex @@ -148,7 +148,7 @@ E\ket{\Psi_\text{V}} \text{ .} Ionic potentials, which are spherically symmteric, suggest to treat each angular momentum $l,m$ separately leading to $l$-dependent non-local (NL) model potentials $V_l(r)$ and a total potential \begin{equation} -V=\sum_{l,m}\ket{lm}V_l(r)\bra{lm} \text{ .} +V=\sum_{l,m}\ket{lm}V_l(\vec{r})\bra{lm} \text{ .} \end{equation} In fact, applied to a function, the potential turns out to be non-local in the angular coordinates but local in the radial variable, which suggests to call it asemilocal (SL) potential. @@ -160,7 +160,7 @@ Integral with respect to the radial component needs to be evaluated for each pla A local potential can always be separated from the potential \ldots \begin{equation} -V=\ldots=V_{\text{local}}(r)+\ldots +V=\ldots=V_{\text{local}}(\vec{r})+\ldots \end{equation} \subsubsection{Norm conserving pseudopotentials} @@ -169,12 +169,189 @@ HSC potential \ldots \subsubsection{Fully separable form of the pseudopotential} +KB transformation \ldots +\subsection{Spin-orbit interaction} + +Relativistic effects can be incorporated in the normconserving pseudopotential method up to but not including order $\alpha^2$ with $\alpha$ being the fine structure constant. +This is advantageous since \ldots +With the solutions of the all-electron Dirac equations, the new pseudopotential reads +\begin{equation} +V(\vec{r})=\sum_{l,m}\left[ +\ket{l+\frac{1}{2},m+{\frac{1}{2}}}V_{l,l+\frac{1}{2}}(\vec{r}) +\bra{l+\frac{1}{2},m+{\frac{1}{2}}} + +\ket{l-\frac{1}{2},m-{\frac{1}{2}}}V_{l,l-\frac{1}{2}}(\vec{r}) +\bra{l-\frac{1}{2},m-{\frac{1}{2}}} +\right] \text{ .} +\end{equation} +By defining an averaged potential weighted by the different $j$ degeneracies of the $\ket{l\pm\frac{1}{2}}$ states +\begin{equation} +\bar{V}_l(r)=\frac{1}{2l+1}\left( +l V_{l,l-\frac{1}{2}}(\vec{r})+(l+1)V_{l,l+\frac{1}{2}}(\vec{r})\right) +\end{equation} +and a potential describing the difference in the potential with respect to the spin +\begin{equation} +V^{\text{SO}}_l(\vec{r})=\frac{2}{2l+1}\left( +V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) +\end{equation} +the total potential can be expressed as +\begin{equation} +V(\vec{r})=\sum_l +\ket{l}\left[\bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r})LS\right]\bra{l} +\text{ ,} +\end{equation} +where the first term correpsonds to the mass velocity and Darwin relativistic corrections and the latter is associated with the spin-orbit (SO) coupling. -\subsection{Spin orbit interaction} +\subsubsection{Excursus: real space representation within an iterative treatment} -\subsubsection{Perturbative treatment} +In the following, the spin-orbit part is evaluated in real space. +Since spin is treated in another subspace, it can be treated separately. +The matrix elements of the orbital angular momentum part of the potential in KB form read +\begin{equation} +\sum_{lm} +\bra{\vec{r}'}(r\times p)\ket{\chi_{lm}}E^{\text{SO,KB}}_l +\braket{\chi_{lm}}{\vec{r}''} +\text{ .} +\end{equation} +With +\begin{eqnarray} +\bra{\vec{r}'}r\ket{\chi_{lm}} & = & \vec{r}'\braket{\vec{r}'}{\chi_{lm}}\\ +\bra{\vec{r}'}p\ket{\chi_{lm}} & = & -i\hbar\nabla_{\vec{r}'} +\braket{\vec{r}'}{\chi_{lm}} +\end{eqnarray} +we get +\begin{equation} +-i\hbar\sum_{lm}(\vec{r}'\times \nabla_{\vec{r}'})\braket{\vec{r}'}{\chi_{lm}} +E^{\text{SO,KB}}_l\braket{\chi_{lm}}{\vec{r}''} +\text{ .} +\label{eq:solid:so_me} +\end{equation} +To further evaluate this expression, the KB projectors +\begin{equation} +\ket{\chi_{lm}}=\frac{\ket{\delta V_l^{\text{SO}}\Phi_{lm}}} +{\braket{\delta V_l^{\text{SO}}\Phi_{lm}} + {\Phi_{lm}\delta V_l^{\text{SO}}}^{1/2}} +\end{equation} +must be known in real space (with respect to $\vec{r}'$). +\begin{equation} +\braket{\vec{r}'}{\chi_{lm}}= +\frac{\braket{\vec{r}'}{\delta V_l^{\text{SO}}\Phi_{lm}}}{ +\braket{\delta V_l^{\text{SO}}\Phi_{lm}}{\Phi_{lm}\delta V_l^{\text{SO}}} +^{1/2}} +\end{equation} +and +\begin{equation} +\braket{\vec{r}'}{\delta V_l^{\text{SO}}\Phi_{lm}}= +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'}Y_{lm}(\Omega_{\vec{r}'}) +\text{ .} +\label{eq:solid:so_r1} +\end{equation} +In this expression, only the spherical harmonics are complex functions. +Thus, the complex conjugate with respect to $\vec{r}''$ is given by +\begin{equation} +\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{\vec{r}''}= +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}Y^*_{lm}(\Omega_{\vec{r}''}) +\text{ .} +\label{eq:solid:so_r2} +\end{equation} +Using the orthonormality property +\begin{equation} +\int Y^*_{l'm'}(\Omega_r)Y_{lm}(\Omega_r) d\Omega_r = \delta_{ll'}\delta_{mm'} +\label{eq:solid:y_ortho} +\end{equation} +of the spherical harmonics, the squared norm of the $\chi_{lm}$ reduces to +\begin{eqnarray} +\braket{\delta V_l^{\text{SO}}\Phi_{lm}}{\Phi_{lm}\delta V_l^{\text{SO}}} &=& +\int \braket{\delta V_l^{\text{SO}}\Phi_{lm}}{\vec{r}'} +\braket{\vec{r}'}{\Phi_{lm}\delta V_l^{\text{SO}}} d\vec{r}'\\ +&=&\int +{\delta V_l^{\text{SO}}}^2(r')\frac{u_l^2(r')}{r'^2}Y^*_{lm}(\Omega_{\vec{r}'}) +Y_{lm}(\Omega_{\vec{r}'}) +r'^2 dr' d\Omega_{\vec{r}'} \\ +&=&\int_{r'} +{\delta V_l^{\text{SO}}}^2(r') u_l^2(r') dr' +\int_{\Omega_{\vec{r}'}}Y^*_{lm}(\Omega_{\vec{r}'})Y_{lm}(\Omega_{\vec{r}'}) d\Omega_{\vec{r}'}\\ +&=&\int_{r'}{\delta V_l^{\text{SO}}}^2(r') u_l^2(r') dr' \text{ .} +\end{eqnarray} +To obtain a final expression for the matrix elements \eqref{eq:solid:so_me}, the sum of the products of \eqref{eq:solid:so_r1} and \eqref{eq:solid:so_r2} must be further evaluated. +\begin{eqnarray} +\sum_{lm} +\braket{\vec{r}'}{\delta V_l^{\text{SO}}\Phi_{lm}} +\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{\vec{r}''}&=&\sum_{lm} +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'}Y_{lm}(\Omega_{\vec{r}'}) +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}Y^*_{lm}(\Omega_{\vec{r}''})\nonumber\\ +&=&\sum_l +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}\sum_m +Y^*_{lm}(\Omega_{\vec{r}''})Y_{lm}(\Omega_{\vec{r}'})\nonumber\\ +&=&\sum_l +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''} +P_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)\frac{2l+1}{4\pi}\nonumber\\ +\end{eqnarray} +due to the vector addition theorem +\begin{equation} +P_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)= +\frac{4\pi}{2l+1}\sum_mY^*_{lm}(\Omega_{\vec{r}''})Y_{lm}(\Omega_{\vec{r}'}) +\text{ .} +\end{equation} +In total, the matrix elements of the SO potential can be calculated by +\begin{eqnarray} +-i\hbar\sum_{lm}(\vec{r}'\times \nabla_{\vec{r}'})\braket{\vec{r}'}{\chi_{lm}} +E^{\text{SO,KB}}_l\braket{\chi_{lm}}{\vec{r}''}=\\ +=-i\hbar\sum_l(\vec{r}'\times \nabla_{\vec{r}'}) +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +P_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)\cdot\nonumber +\frac{E^{\text{SO,KB}}_l\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}} + {\int_{r}{\delta V_l^{\text{SO}}}^2(r) u_l^2(r) dr} \cdot +\frac{2l+1}{4\pi}\nonumber\\ += +-i\hbar\sum_l +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +P'_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)\cdot +\left(\frac{\vec{r}'\times\vec{r}''}{r'r''}\right)\cdot +\frac{E^{\text{SO,KB}}_l\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}} + {\int_{r}{\delta V_l^{\text{SO}}}^2(r) u_l^2(r) dr} \, +\frac{2l+1}{4\pi}\text{ ,} +\label{eq:solid:so_fin} +\end{eqnarray} +where the derivatives of functions that depend on the absolute value of $\vec{r}'$ do not contribute due to the cross product as can be seen from equations \eqref{eq:solid:rxp1} and \eqref{eq:solid:rxp2}. +\begin{eqnarray} +\left(\vec{r}\times\nabla_{\vec{r}}\right)f(r)&=& +\left(\begin{array}{l} +r_y\frac{\partial}{\partial r_z}f(r)-r_z\frac{\partial}{\partial r_y}f(r)\\ +r_z\frac{\partial}{\partial r_x}f(r)-r_x\frac{\partial}{\partial r_z}f(r)\\ +r_x\frac{\partial}{\partial r_y}f(r)-r_y\frac{\partial}{\partial r_x}f(r) +\end{array}\right) +\label{eq:solid:rxp1} +\end{eqnarray} +\begin{eqnarray} +r_i\frac{\partial}{\partial r_j}f(r)-r_j\frac{\partial}{\partial r_i}f(r)&=& +r_if'(r)\frac{\partial}{\partial r_j}(r_x^2+r_y^2+r_z^2)^{1/2}- +r_jf'(r)\frac{\partial}{\partial r_i}(r_x^2+r_y^2+r_z^2)^{1/2}\nonumber\\ +&=& +r_if'(r)\frac{1}{2r}2r_j-r_jf'(r)\frac{1}{2r}2r_i=0 +\label{eq:solid:rxp2} +\end{eqnarray} -\subsubsection{Non-perturbative method} +If the potential at position $\vec{r}$ is considered a sum of atomic potentials $v_{\alpha}(\vec{r}-\vec{\tau}_{\alpha n})$ (atom $n$ of species $\alpha$) +\begin{equation} +V(\vec{r})=\sum_{\alpha}\sum_n v_{\alpha}(\vec{r}-\vec{\tau}_{\alpha n}) +\end{equation} +and the SO projectors are likewise centered on atoms, the SO potential contribution reads +\begin{equation} +\end{equation} +The $E_l^{\text{SO,KB}}$ are given by +\begin{equation} +E_l^{\text{SO,KB}}= +\frac{\braket{\delta V_lu_l}{u_l\delta V_l}} + {\bra{u_l}\delta V_l\ket{u_l}}= +\frac{\int_{r}\delta V^2_l(r)u^2_l(r)}r^2dr + {\int_{r'}\int_{r''}\braket{u_l}{r'}\bra{r'}\delta V_l +\ket{r''}\braket{r''}{u_l}}= +\end{equation} +Finally, to evaluate $V^{\text{SO}}_l\ket{\Psi}$, the integral \ldots +\begin{equation} +\end{equation}