X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fsolid.tex;h=20ecfef44e2132a8f2f8eb73c9dd44480b5cf773;hp=f7cf91f0e439c33929274f0a1b6b5d148aeb8ff7;hb=a9f93985e52272cdecf902c4b559173a80f4b41d;hpb=cdd27301504f400ae6a7d7e3cbb5c77cd446b531 diff --git a/physics_compact/solid.tex b/physics_compact/solid.tex index f7cf91f..20ecfef 100644 --- a/physics_compact/solid.tex +++ b/physics_compact/solid.tex @@ -1 +1,47 @@ -\chapter{Theory of the solid state} +\part{Theory of the solid state} + +\chapter{Atomic structure} + +\chapter{Electronic structure} + +\section{Noninteracting electrons} + +\subsection{Bloch's theorem} + +\section{Nearly free and tightly bound electrons} + +\subsection{Tight binding model} + +\section{Interacting electrons} + +\subsection{Density functional theory} + +\subsubsection{Hohenberg-Kohn theorem} + +Considering a system with a nondegenerate ground state, there is obviously only one ground-state charge density $n_0(\vec{r})$ that correpsonds to a given potential $V(\vec{r})$. +In 1964, Hohenberg and Kohn showed the opposite and far less obvious result \cite{hohenberg64}. +For a nondegenerate ground state, the ground-state charge density uniquely determines the external potential in which the electrons reside. +The proof presented by Hohenberg and Kohn proceeds by {\em reductio ad absurdum}. + +Suppose two potentials $V_1$ and $V_2$ exist, which yield the same electron density $n(\vec{r})$. +The corresponding Hamiltonians are denoted $H_1$ and $H_2$ with the respective ground-state wavefunctions $\Psi_1$ and $\Psi_2$ and eigenvalues $E_1$ and $E_2$. +Then, due to the variational principle (see \ref{sec:var_meth}), one can write +\begin{equation} +E_1=\langle \Psi_1 | H_1 | \Psi_1 \rangle < \langle \Psi_2 | H_1 | \Psi_2 \rangle +\end{equation} +Expressing $H_1$ by $H_2+H_1-H_2$ +\begin{equation} +\langle \Psi_2 | H_1 | \Psi_2 \rangle = +\langle \Psi_2 | H_2 | \Psi_2 \rangle + +\langle \Psi_2 | H_1 -H_2 | \Psi_2 \rangle +\end{equation} +and the fact that the two Hamiltonians, which describe the same number of electrons, differ only in the potential +\begin{equation} +H_1-H_2=V_1(\vec{r})-V_2(\vec{r}) +\end{equation} +one obtains +\begin{equation} +E_1