X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fsolid.tex;h=306d23523eecaf24bcfa1e653be492f7b9196177;hp=ed9bddbcc907b4f82addad8cd899305a2801193a;hb=f4666008c79f572cbe7cbfa5f9a7e306bfa1637c;hpb=4069f849b1973e2eb9020fa2e190f93b56537c60 diff --git a/physics_compact/solid.tex b/physics_compact/solid.tex index ed9bddb..306d235 100644 --- a/physics_compact/solid.tex +++ b/physics_compact/solid.tex @@ -2,6 +2,10 @@ \chapter{Atomic structure} +\chapter{Reciprocal lattice} + +Example of primitive cell ... + \chapter{Electronic structure} \section{Noninteracting electrons} @@ -105,3 +109,309 @@ E_1 + E_2 < E_2 + E_1 + is revealed, which proofs the Hohenberg Kohn theorem.% \qed \end{proof} +\section{Electron-ion interaction} + +\subsection{Pseudopotential theory} + +The basic idea of pseudopotential theory is to only describe the valence electrons, which are responsible for the chemical bonding as well as the electronic properties for the most part. + +\subsubsection{Orthogonalized planewave method} + +Due to the orthogonality of the core and valence wavefunctions, the latter exhibit strong oscillations within the core region of the atom. +This requires a large amount of planewaves $\ket{k}$ to adequatley model the valence electrons. + +In a very general approach, the orthogonalized planewave (OPW) method introduces a new basis set +\begin{equation} +\ket{k}_{\text{OPW}} = \ket{k} - \sum_t \ket{t}\bra{t}k\rangle \text{ ,} +\end{equation} +with $\ket{t}$ being the eigenstates of the core electrons. +The new basis is orthogonal to the core states $\ket{t}$. +\begin{equation} +\braket{t}{k}_{\text{OPW}} = +\braket{t}{k} - \sum_{t'} \braket{t}{t'}\braket{t'}{k} = +\braket{t}{k} - \braket{t}{k}=0 +\end{equation} +The number of planewaves required for reasonably converged electronic structure calculations is tremendously reduced by utilizing the OPW basis set. + +\subsubsection{Pseudopotential method} + +Following the idea of orthogonalized planewaves leads to the pseudopotential idea, which --- in describing only the valence electrons --- effectively removes an undesriable subspace from the investigated problem. + +Let $\ket{\Psi_\text{V}}$ be the wavefunction of a valence electron with the Schr\"odinger equation +\begin{equation} +H \ket{\Psi_\text{V}} = \left(\frac{1}{2m}p^2+V\right)\ket{\Psi_\text{V}}= +E\ket{\Psi_\text{V}} \text{ .} +\end{equation} +\ldots projection operatore $P_\text{C}$ \ldots + +\subsubsection{Semilocal form of the pseudopotential} + +Ionic potentials, which are spherically symmteric, suggest to treat each angular momentum $l,m$ separately leading to $l$-dependent non-local (NL) model potentials $V_l(r)$ and a total potential +\begin{equation} +V=\sum_{l,m}\ket{lm}V_l(\vec{r})\bra{lm} \text{ .} +\end{equation} +In fact, applied to a function, the potential turns out to be non-local in the angular coordinates but local in the radial variable, which suggests to call it asemilocal (SL) potential. + +Problem of semilocal potantials become valid once matrix elements need to be computed. +Integral with respect to the radial component needs to be evaluated for each planewave combination, i.e.\ $N(N-1)/2$ integrals. +\begin{equation} +\bra{k+G}V\ket{k+G'} = \ldots +\end{equation} + +A local potential can always be separated from the potential \ldots +\begin{equation} +V=\ldots=V_{\text{local}}(\vec{r})+\ldots +\end{equation} + +\subsubsection{Norm conserving pseudopotentials} + +HSC potential \ldots + +\subsubsection{Fully separable form of the pseudopotential} + +KB transformation \ldots + +\subsection{Spin-orbit interaction} + +Relativistic effects can be incorporated in the normconserving pseudopotential method up to but not including terms of order $\alpha^2$ \cite{kleinman80,bachelet82} with $\alpha$ being the fine structure constant. +This is advantageous since \ldots +With the solutions of the all-electron Dirac equations, the new pseudopotential reads +\begin{equation} +V(\vec{r})=\sum_{l,m}\left[ +\ket{l+\frac{1}{2},m+{\frac{1}{2}}}V_{l,l+\frac{1}{2}}(\vec{r}) +\bra{l+\frac{1}{2},m+{\frac{1}{2}}} + +\ket{l-\frac{1}{2},m-{\frac{1}{2}}}V_{l,l-\frac{1}{2}}(\vec{r}) +\bra{l-\frac{1}{2},m-{\frac{1}{2}}} +\right] \text{ .} +\label{eq:solid:so_bs1} +\end{equation} +By defining an averaged potential weighted by the different $j$ degeneracies of the $\ket{l\pm\frac{1}{2}}$ states +\begin{equation} +\bar{V}_l(r)=\frac{1}{2l+1}\left( +l V_{l,l-\frac{1}{2}}(\vec{r})+(l+1)V_{l,l+\frac{1}{2}}(\vec{r})\right) +\end{equation} +and a potential describing the difference in the potential with respect to the spin +\begin{equation} +V^{\text{SO}}_l(\vec{r})=\frac{2}{2l+1}\left( +V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) +\end{equation} +the total potential can be expressed as +\begin{equation} +V(\vec{r})=\sum_l +\ket{l,m}\left[\bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r})LS\right]\bra{l,m} +\text{ ,} +\label{eq:solid:so_bs2} +\end{equation} +where the first term correpsonds to the mass velocity and Darwin relativistic corrections and the latter is associated with the spin-orbit (SO) coupling. +\begin{proof} +This can be shown by rewriting the $LS$ operator +\begin{equation} +J=L+S \Leftrightarrow J^2=L^2+S^2+2LS \Leftrightarrow +LS=\frac{1}{2}\left(J^2-L^2-S^2\right) +\end{equation} +and corresponding eigenvalue +\begin{eqnarray} +j(j+1)-l(l+1)-s(s+1)&=& +(l\pm\frac{1}{2})(l\pm\frac{1}{2}+1)-l^2-l-\frac{3}{4} \nonumber\\ +&=& +l^2\pm\frac{l}{2}+l\pm\frac{l}{2}+\frac{1}{4}\pm\frac{1}{2}-l^2-l-\frac{3}{4} +\nonumber\\ +&=&\pm(l+\frac{1}{2})-\frac{1}{2}=\left\{\begin{array}{rl} +l & \text{for } j=l+\frac{1}{2}\\ +-(l+1) & \text{for } j=l-\frac{1}{2} +\end{array}\right. +\text{ ,} +\end{eqnarray} +which, if used in equation~\eqref{eq:solid:so_bs2}, gives the same (diagonal) matrix elements +\begin{eqnarray} +\bra{l\pm\frac{1}{2},m\pm\frac{1}{2}}V(\vec{r}) +\ket{l\pm\frac{1}{2},m\pm\frac{1}{2}}&=& +\bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r}) +\frac{1}{2}\left(l(l+1)-j(j+1)-\frac{3}{4}\right) \nonumber\\ +&=&\bar{V}_l(\vec{r})+\frac{1}{2}V^{\text{SO}}_l(\vec{r}) +\left\{\begin{array}{rl} +l & \text{for } j=l+\frac{1}{2}\\ +-(l+1) & \text{for } j=l-\frac{1}{2} +\end{array}\right. \nonumber\\ +&=&\frac{1}{2l+1}\left(lV_{l,l-\frac{1}{2}}(\vec{r})+ + (l+1)V_{l,l+\frac{1}{2}}(\vec{r})\right)+\nonumber\\ +&&+\frac{1}{2l+1}\left\{\begin{array}{rl} +l\left(V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) & + \text{for } j=l+\frac{1}{2}\\ +-(l+1)\left(V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) & + \text{for } j=l-\frac{1}{2} +\end{array}\right. +\end{eqnarray} +as equation~\eqref{eq:solid:so_bs1} +\begin{equation} +\text{ .} +\end{equation} + +\end{proof} + + +\subsubsection{Excursus: Real space representation within an iterative treatment} + +In the following, the spin-orbit part is evaluated in real space. +Since spin is treated in another subspace, it can be treated separately. +The matrix elements of the orbital angular momentum part of the potential in KB form read +\begin{equation} +\sum_{lm} +\bra{\vec{r}'}(r\times p)\ket{\chi_{lm}}E^{\text{SO,KB}}_l +\braket{\chi_{lm}}{\vec{r}''} +\text{ .} +\end{equation} +With +\begin{eqnarray} +\bra{\vec{r}'}r\ket{\chi_{lm}} & = & \vec{r}'\braket{\vec{r}'}{\chi_{lm}}\\ +\bra{\vec{r}'}p\ket{\chi_{lm}} & = & -i\hbar\nabla_{\vec{r}'} +\braket{\vec{r}'}{\chi_{lm}} +\end{eqnarray} +we get +\begin{equation} +-i\hbar\sum_{lm}(\vec{r}'\times \nabla_{\vec{r}'})\braket{\vec{r}'}{\chi_{lm}} +E^{\text{SO,KB}}_l\braket{\chi_{lm}}{\vec{r}''} +\text{ .} +\label{eq:solid:so_me} +\end{equation} +To further evaluate this expression, the KB projectors +\begin{equation} +\ket{\chi_{lm}}=\frac{\ket{\delta V_l^{\text{SO}}\Phi_{lm}}} +{\braket{\delta V_l^{\text{SO}}\Phi_{lm}} + {\Phi_{lm}\delta V_l^{\text{SO}}}^{1/2}} +\end{equation} +must be known in real space (with respect to $\vec{r}'$). +\begin{equation} +\braket{\vec{r}'}{\chi_{lm}}= +\frac{\braket{\vec{r}'}{\delta V_l^{\text{SO}}\Phi_{lm}}}{ +\braket{\delta V_l^{\text{SO}}\Phi_{lm}}{\Phi_{lm}\delta V_l^{\text{SO}}} +^{1/2}} +\end{equation} +and +\begin{equation} +\braket{\vec{r}'}{\delta V_l^{\text{SO}}\Phi_{lm}}= +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'}Y_{lm}(\Omega_{\vec{r}'}) +\text{ .} +\label{eq:solid:so_r1} +\end{equation} +In this expression, only the spherical harmonics are complex functions. +Thus, the complex conjugate with respect to $\vec{r}''$ is given by +\begin{equation} +\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{\vec{r}''}= +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}Y^*_{lm}(\Omega_{\vec{r}''}) +\text{ .} +\label{eq:solid:so_r2} +\end{equation} +Using the orthonormality property +\begin{equation} +\int Y^*_{l'm'}(\Omega_r)Y_{lm}(\Omega_r) d\Omega_r = \delta_{ll'}\delta_{mm'} +\label{eq:solid:y_ortho} +\end{equation} +of the spherical harmonics, the squared norm of the $\chi_{lm}$ reduces to +\begin{eqnarray} +\braket{\delta V_l^{\text{SO}}\Phi_{lm}}{\Phi_{lm}\delta V_l^{\text{SO}}} &=& +\int \braket{\delta V_l^{\text{SO}}\Phi_{lm}}{\vec{r}'} +\braket{\vec{r}'}{\Phi_{lm}\delta V_l^{\text{SO}}} d\vec{r}'\\ +&=&\int +{\delta V_l^{\text{SO}}}^2(r')\frac{u_l^2(r')}{r'^2}Y^*_{lm}(\Omega_{\vec{r}'}) +Y_{lm}(\Omega_{\vec{r}'}) +r'^2 dr' d\Omega_{\vec{r}'} \\ +&=&\int_{r'} +{\delta V_l^{\text{SO}}}^2(r') u_l^2(r') dr' +\int_{\Omega_{\vec{r}'}}Y^*_{lm}(\Omega_{\vec{r}'})Y_{lm}(\Omega_{\vec{r}'}) d\Omega_{\vec{r}'}\\ +&=&\int_{r'}{\delta V_l^{\text{SO}}}^2(r') u_l^2(r') dr' \text{ .}\\ +&=&\braket{\delta V_l^{\text{SO}}u_l}{u_l\delta V_l^{\text{SO}}} +\end{eqnarray} +To obtain a final expression for the matrix elements \eqref{eq:solid:so_me}, the sum of the products of \eqref{eq:solid:so_r1} and \eqref{eq:solid:so_r2} must be further evaluated. +\begin{eqnarray} +\sum_{lm} +\braket{\vec{r}'}{\delta V_l^{\text{SO}}\Phi_{lm}} +\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{\vec{r}''}&=&\sum_{lm} +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'}Y_{lm}(\Omega_{\vec{r}'}) +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}Y^*_{lm}(\Omega_{\vec{r}''})\nonumber\\ +&=&\sum_l +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}\sum_m +Y^*_{lm}(\Omega_{\vec{r}''})Y_{lm}(\Omega_{\vec{r}'})\nonumber\\ +&=&\sum_l +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''} +P_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)\frac{2l+1}{4\pi}\nonumber\\ +\end{eqnarray} +due to the vector addition theorem +\begin{equation} +P_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)= +\frac{4\pi}{2l+1}\sum_mY^*_{lm}(\Omega_{\vec{r}''})Y_{lm}(\Omega_{\vec{r}'}) +\text{ .} +\end{equation} +In total, the matrix elements of the SO potential can be calculated by +\begin{eqnarray} +&&-i\hbar\sum_{lm}(\vec{r}'\times \nabla_{\vec{r}'})\braket{\vec{r}'}{\chi_{lm}} +E^{\text{SO,KB}}_l\braket{\chi_{lm}}{\vec{r}''}=\nonumber\\ +&=&-i\hbar\sum_l(\vec{r}'\times \nabla_{\vec{r}'}) +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +P_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)\cdot +\frac{E^{\text{SO,KB}}_l\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}} + {\int_{r}{\delta V_l^{\text{SO}}}^2(r) u_l^2(r) dr} \cdot +\frac{2l+1}{4\pi}\nonumber\\ +&=& +-i\hbar\sum_l +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +P'_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)\cdot +\left(\frac{\vec{r}'\times\vec{r}''}{r'r''}\right)\cdot +\frac{E^{\text{SO,KB}}_l\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}} + {\int_{r}{\delta V_l^{\text{SO}}}^2(r) u_l^2(r) dr} \, +\frac{2l+1}{4\pi}\text{ ,}\nonumber\\ +\label{eq:solid:so_fin} +\end{eqnarray} +since derivatives of functions that depend on the absolute value of $\vec{r}'$ do not contribute due to the cross product as is illustrated below (equations \eqref{eq:solid:rxp1} and \eqref{eq:solid:rxp2}). +\begin{eqnarray} +\left(\vec{r}\times\nabla_{\vec{r}}\right)f(r)&=& +\left(\begin{array}{l} +r_y\frac{\partial}{\partial r_z}f(r)-r_z\frac{\partial}{\partial r_y}f(r)\\ +r_z\frac{\partial}{\partial r_x}f(r)-r_x\frac{\partial}{\partial r_z}f(r)\\ +r_x\frac{\partial}{\partial r_y}f(r)-r_y\frac{\partial}{\partial r_x}f(r) +\end{array}\right) +\label{eq:solid:rxp1} +\end{eqnarray} +\begin{eqnarray} +r_i\frac{\partial}{\partial r_j}f(r)-r_j\frac{\partial}{\partial r_i}f(r)&=& +r_if'(r)\frac{\partial}{\partial r_j}(r_x^2+r_y^2+r_z^2)^{1/2}- +r_jf'(r)\frac{\partial}{\partial r_i}(r_x^2+r_y^2+r_z^2)^{1/2}\nonumber\\ +&=& +r_if'(r)\frac{1}{2r}2r_j-r_jf'(r)\frac{1}{2r}2r_i=0 +\label{eq:solid:rxp2} +\end{eqnarray} + +If these projectors are considered to be centered around atom positions $\vec{\tau}_{\alpha n}$ of atoms $n$ of species $\alpha$, the variable $\vec{r}'$ in the previous equations is changed to $\vec{r}'_{\alpha n}=\vec{r}'-\vec{\tau}_{\alpha n}$, which implies +\begin{eqnarray} +r'&\rightarrow&r_{\alpha n}=|\vec{r}'-\vec{\tau}_{\alpha n}|\\ +\Omega_{\vec{r}'}&\rightarrow&\Omega_{\vec{r'}-\vec{\tau}_{\alpha n}}\\ +\delta V_l(r')&\rightarrow&\delta V_l(|\vec{r}'-\vec{\tau}_{\alpha n}|)\\ +u_l(r')&\rightarrow&u_l(|\vec{r}'-\vec{\tau}_{\alpha n}|)\\ +Y_{lm}(\Omega_{\vec{r}'})&\rightarrow& +Y_{lm}(\Omega_{\vec{r}'-\vec{\tau}_{\alpha n}}) +\text{ .} +\end{eqnarray} +Within an iterative treatment on a real space grid consisting of $n_{\text{g}}$ grid points, the sum +\begin{equation} +\sum_{\vec{r}''_{\alpha n}} +\sum_{lm}-i\hbar(\vec{r}'_{\alpha n}\times \nabla_{\vec{r}'_{\alpha n}}) +\braket{\vec{r}'_{\alpha n}}{\chi^{\text{SO}}_{lm}} +E^{\text{SO,KB}}_l\braket{\chi^{\text{SO}}_{lm}}{\vec{r}''_{\alpha n}} +\braket{\vec{r}''_{\alpha n}}{\Psi} +\qquad\forall\,\bra{\vec{r}'_{\alpha n}} +\end{equation} +to obtain all elements $\bra{\vec{r}'_{\alpha n}}$, involves $n_{\text{g}}^2$ evaluations of equation~\eqref{eq:solid:so_fin} for eeach atom, if the projectors are short-ranged, i.e.\ $\delta V_l=0$ outside a certain cut-off radius. +Thus, this method scales linearly with the number of atoms. + +The $E_l^{\text{SO,KB}}$ are given by +\begin{equation} +E_l^{\text{SO,KB}}= +\frac{\braket{\delta V_lu_l}{u_l\delta V_l}} + {\bra{u_l}\delta V_l\ket{u_l}}= +\frac{\int_{r}\delta V^2_l(r)u^2_l(r)}r^2dr + {\int_{r'}\int_{r''}\braket{u_l}{r'}\bra{r'}\delta V_l +\ket{r''}\braket{r''}{u_l}}= +\end{equation} +