X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fsolid.tex;h=306d23523eecaf24bcfa1e653be492f7b9196177;hp=ee0cc2a0adef0bd3e8fa124d4dcbdfe45fc06b02;hb=f4666008c79f572cbe7cbfa5f9a7e306bfa1637c;hpb=93808b285afe6d16ac131af43108b975a0cc9042 diff --git a/physics_compact/solid.tex b/physics_compact/solid.tex index ee0cc2a..306d235 100644 --- a/physics_compact/solid.tex +++ b/physics_compact/solid.tex @@ -173,7 +173,7 @@ KB transformation \ldots \subsection{Spin-orbit interaction} -Relativistic effects can be incorporated in the normconserving pseudopotential method up to but not including order $\alpha^2$ with $\alpha$ being the fine structure constant. +Relativistic effects can be incorporated in the normconserving pseudopotential method up to but not including terms of order $\alpha^2$ \cite{kleinman80,bachelet82} with $\alpha$ being the fine structure constant. This is advantageous since \ldots With the solutions of the all-electron Dirac equations, the new pseudopotential reads \begin{equation} @@ -183,6 +183,7 @@ V(\vec{r})=\sum_{l,m}\left[ \ket{l-\frac{1}{2},m-{\frac{1}{2}}}V_{l,l-\frac{1}{2}}(\vec{r}) \bra{l-\frac{1}{2},m-{\frac{1}{2}}} \right] \text{ .} +\label{eq:solid:so_bs1} \end{equation} By defining an averaged potential weighted by the different $j$ degeneracies of the $\ket{l\pm\frac{1}{2}}$ states \begin{equation} @@ -197,10 +198,56 @@ V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) the total potential can be expressed as \begin{equation} V(\vec{r})=\sum_l -\ket{l}\left[\bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r})LS\right]\bra{l} +\ket{l,m}\left[\bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r})LS\right]\bra{l,m} \text{ ,} +\label{eq:solid:so_bs2} \end{equation} where the first term correpsonds to the mass velocity and Darwin relativistic corrections and the latter is associated with the spin-orbit (SO) coupling. +\begin{proof} +This can be shown by rewriting the $LS$ operator +\begin{equation} +J=L+S \Leftrightarrow J^2=L^2+S^2+2LS \Leftrightarrow +LS=\frac{1}{2}\left(J^2-L^2-S^2\right) +\end{equation} +and corresponding eigenvalue +\begin{eqnarray} +j(j+1)-l(l+1)-s(s+1)&=& +(l\pm\frac{1}{2})(l\pm\frac{1}{2}+1)-l^2-l-\frac{3}{4} \nonumber\\ +&=& +l^2\pm\frac{l}{2}+l\pm\frac{l}{2}+\frac{1}{4}\pm\frac{1}{2}-l^2-l-\frac{3}{4} +\nonumber\\ +&=&\pm(l+\frac{1}{2})-\frac{1}{2}=\left\{\begin{array}{rl} +l & \text{for } j=l+\frac{1}{2}\\ +-(l+1) & \text{for } j=l-\frac{1}{2} +\end{array}\right. +\text{ ,} +\end{eqnarray} +which, if used in equation~\eqref{eq:solid:so_bs2}, gives the same (diagonal) matrix elements +\begin{eqnarray} +\bra{l\pm\frac{1}{2},m\pm\frac{1}{2}}V(\vec{r}) +\ket{l\pm\frac{1}{2},m\pm\frac{1}{2}}&=& +\bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r}) +\frac{1}{2}\left(l(l+1)-j(j+1)-\frac{3}{4}\right) \nonumber\\ +&=&\bar{V}_l(\vec{r})+\frac{1}{2}V^{\text{SO}}_l(\vec{r}) +\left\{\begin{array}{rl} +l & \text{for } j=l+\frac{1}{2}\\ +-(l+1) & \text{for } j=l-\frac{1}{2} +\end{array}\right. \nonumber\\ +&=&\frac{1}{2l+1}\left(lV_{l,l-\frac{1}{2}}(\vec{r})+ + (l+1)V_{l,l+\frac{1}{2}}(\vec{r})\right)+\nonumber\\ +&&+\frac{1}{2l+1}\left\{\begin{array}{rl} +l\left(V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) & + \text{for } j=l+\frac{1}{2}\\ +-(l+1)\left(V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) & + \text{for } j=l-\frac{1}{2} +\end{array}\right. +\end{eqnarray} +as equation~\eqref{eq:solid:so_bs1} +\begin{equation} +\text{ .} +\end{equation} + +\end{proof} \subsubsection{Excursus: Real space representation within an iterative treatment}