X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fsolid.tex;h=5e69a799a18a5174921aabe05797cc83202675e6;hp=01f545c984d26622bff40ebf8c614ee38efd8b18;hb=6a26b9f5593acc0bf19241b2fe79f1acf51fb03e;hpb=8d1d7674ef08669827ef927728256566d173a1b3 diff --git a/physics_compact/solid.tex b/physics_compact/solid.tex index 01f545c..5e69a79 100644 --- a/physics_compact/solid.tex +++ b/physics_compact/solid.tex @@ -173,7 +173,7 @@ KB transformation \ldots \subsection{Spin-orbit interaction} -Relativistic effects can be incorporated in the normconserving pseudopotential method up to but not including order $\alpha^2$ with $\alpha$ being the fine structure constant. +Relativistic effects can be incorporated in the normconserving pseudopotential method up to but not including terms of order $\alpha^2$ \cite{kleinman80,bachelet82} with $\alpha$ being the fine structure constant. This is advantageous since \ldots With the solutions of the all-electron Dirac equations, the new pseudopotential reads \begin{equation} @@ -183,6 +183,7 @@ V(\vec{r})=\sum_{l,m}\left[ \ket{l-\frac{1}{2},m-{\frac{1}{2}}}V_{l,l-\frac{1}{2}}(\vec{r}) \bra{l-\frac{1}{2},m-{\frac{1}{2}}} \right] \text{ .} +\label{eq:solid:so_bs1} \end{equation} By defining an averaged potential weighted by the different $j$ degeneracies of the $\ket{l\pm\frac{1}{2}}$ states \begin{equation} @@ -197,13 +198,104 @@ V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) the total potential can be expressed as \begin{equation} V(\vec{r})=\sum_l -\ket{l}\left[\bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r})LS\right]\bra{l} +\ket{l,m}\left[\bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r})LS\right]\bra{l,m} \text{ ,} +\label{eq:solid:so_bs2} \end{equation} where the first term correpsonds to the mass velocity and Darwin relativistic corrections and the latter is associated with the spin-orbit (SO) coupling. +\begin{proof} +This can be shown by rewriting the $LS$ operator +\begin{equation} +J=L+S \Leftrightarrow J^2=L^2+S^2+2LS \Leftrightarrow +LS=\frac{1}{2}\left(J^2-L^2-S^2\right) +\end{equation} +and corresponding eigenvalue +\begin{eqnarray} +j(j+1)-l(l+1)-s(s+1)&=& +(l\pm\frac{1}{2})(l\pm\frac{1}{2}+1)-l^2-l-\frac{3}{4} \nonumber\\ +&=& +l^2\pm\frac{l}{2}+l\pm\frac{l}{2}+\frac{1}{4}\pm\frac{1}{2}-l^2-l-\frac{3}{4} +\nonumber\\ +&=&\pm(l+\frac{1}{2})-\frac{1}{2}=\left\{\begin{array}{rl} +l & \text{for } j=l+\frac{1}{2}\\ +-(l+1) & \text{for } j=l-\frac{1}{2} +\end{array}\right. +\text{ ,} +\end{eqnarray} +which, if used in equation~\eqref{eq:solid:so_bs2}, gives the same (diagonal) matrix elements +\begin{eqnarray} +\bra{l\pm\frac{1}{2},m\pm\frac{1}{2}}V(\vec{r}) +\ket{l\pm\frac{1}{2},m\pm\frac{1}{2}}&=& +\bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r}) +\frac{1}{2}\left(l(l+1)-j(j+1)-\frac{3}{4}\right) \nonumber\\ +&=&\bar{V}_l(\vec{r})+\frac{1}{2}V^{\text{SO}}_l(\vec{r}) +\cdot\left\{\begin{array}{cl} +l & \text{for } j=l+\frac{1}{2}\\ +-(l+1) & \text{for } j=l-\frac{1}{2} +\end{array}\right. \nonumber\\ +&=&\frac{1}{2l+1}\left(lV_{l,l-\frac{1}{2}}(\vec{r})+ + (l+1)V_{l,l+\frac{1}{2}}(\vec{r})\right)+\nonumber\\ +&&\frac{1}{2l+1} +\left(V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) +\cdot\left\{\begin{array}{c} +l \\ +-(l+1) +\end{array}\right. \nonumber\\ +&=&\left\{\begin{array}{cl} +V_{l,l+\frac{1}{2}}(\vec{r}) & \text{for } j=l+\frac{1}{2}\\ +V_{l,l-\frac{1}{2}}(\vec{r}) & \text{for } j=l-\frac{1}{2} +\end{array}\right. +\end{eqnarray} +as expected and --- in fact --- obtained from equation~\eqref{eq:solid:so_bs1}. +\end{proof} +In order to include the spin-orbit interaction into the scalar-relativistic formalism of a normconserving, non-local pseudopotential, scalar-relativistic in contrast to fully relativistic pseudopotential wavefunctions are needed as a basis for the projectors of the spin-orbit potential. +The transformation +\begin{equation} +L\cdot S=L_xS_x+L_yS_y+L_zS_z +\end{equation} +using the ladder operators +\begin{equation} +L_\pm=L_x\pm iL_y \text{ and } S_\pm=S_x\pm iS_y +\text{ ,} +\end{equation} +with properties +\begin{eqnarray} +L_+S_- & = & (L_x+iL_y)(S_x-iS_y)=L_xS_x-iL_xS_y+iL_yS_x+L_yS_y \\ +L_-S_+ & = & (L_x-iL_y)(S_x+iS_y)=L_xS_x+iL_xS_y-iL_yS_x+L_yS_y +\end{eqnarray} +resulting in +\begin{equation} +L_+S_-+L_-S_+=2(L_xS_x+L_yS_y) +\text{ ,} +\end{equation} +reads +\begin{equation} +L\cdot S=\frac{1}{2}(L_+S_-+L_-S_+)+L_zS_z +\text{ .} +\end{equation} +The contributions of this operator act differently on $\ket{l,m}$ and --- in fact --- depend on the respectively considered spinor component, which is incorporated by $\ket{l,m,\pm}$. +\begin{enumerate} +\item \underline{$L_+S_-$}: + Updates spin down component and only acts on spin up component +\begin{equation} +L_+S_-\ket{l,m,+}=L_+\ket{l,m}S_-\ket{+}= +\sqrt{(l-m)(l+m+1)}\hbar\ket{l,m+1}\hbar\ket{-} +\end{equation} +\item \underline{$L_-S_+$}: + Updates spin up component and only acts on spin down component +\begin{equation} +L_+S_-\ket{l,m,-}=L_+\ket{l,m}S_-\ket{+}= +\sqrt{(l-m)(l+m+1)}\hbar\ket{l,m+1}\hbar\ket{-} +\end{equation} +\item \underline{$L_zS_z$}: Acts on both and updates both spinor components +\begin{equation} +L_zS_z\ket{l,m,\pm}=L_z\ket{l,m}S_z\ket{\pm}= +\pm\frac{1}{2}m\hbar^2\ket{l,m,\pm} +\end{equation} +\end{enumerate} -\subsubsection{Excursus: real space representation within an iterative treatment} +\subsubsection{Excursus: Real space representation within an iterative treatment} In the following, the spin-orbit part is evaluated in real space. Since spin is treated in another subspace, it can be treated separately. @@ -272,7 +364,8 @@ r'^2 dr' d\Omega_{\vec{r}'} \\ &=&\int_{r'} {\delta V_l^{\text{SO}}}^2(r') u_l^2(r') dr' \int_{\Omega_{\vec{r}'}}Y^*_{lm}(\Omega_{\vec{r}'})Y_{lm}(\Omega_{\vec{r}'}) d\Omega_{\vec{r}'}\\ -&=&\int_{r'}{\delta V_l^{\text{SO}}}^2(r') u_l^2(r') dr' \text{ .} +&=&\int_{r'}{\delta V_l^{\text{SO}}}^2(r') u_l^2(r') dr' \text{ .}\\ +&=&\braket{\delta V_l^{\text{SO}}u_l}{u_l\delta V_l^{\text{SO}}} \end{eqnarray} To obtain a final expression for the matrix elements \eqref{eq:solid:so_me}, the sum of the products of \eqref{eq:solid:so_r1} and \eqref{eq:solid:so_r2} must be further evaluated. \begin{eqnarray} @@ -298,25 +391,25 @@ P_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)= \end{equation} In total, the matrix elements of the SO potential can be calculated by \begin{eqnarray} --i\hbar\sum_{lm}(\vec{r}'\times \nabla_{\vec{r}'})\braket{\vec{r}'}{\chi_{lm}} -E^{\text{SO,KB}}_l\braket{\chi_{lm}}{\vec{r}''}=\\ -=-i\hbar\sum_l(\vec{r}'\times \nabla_{\vec{r}'}) +&&-i\hbar\sum_{lm}(\vec{r}'\times \nabla_{\vec{r}'})\braket{\vec{r}'}{\chi_{lm}} +E^{\text{SO,KB}}_l\braket{\chi_{lm}}{\vec{r}''}=\nonumber\\ +&=&-i\hbar\sum_l(\vec{r}'\times \nabla_{\vec{r}'}) \delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} -P_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)\cdot\nonumber +P_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)\cdot \frac{E^{\text{SO,KB}}_l\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}} {\int_{r}{\delta V_l^{\text{SO}}}^2(r) u_l^2(r) dr} \cdot \frac{2l+1}{4\pi}\nonumber\\ -= +&=& -i\hbar\sum_l \delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} P'_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)\cdot \left(\frac{\vec{r}'\times\vec{r}''}{r'r''}\right)\cdot \frac{E^{\text{SO,KB}}_l\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}} {\int_{r}{\delta V_l^{\text{SO}}}^2(r) u_l^2(r) dr} \, -\frac{2l+1}{4\pi}\text{ ,} +\frac{2l+1}{4\pi}\text{ ,}\nonumber\\ \label{eq:solid:so_fin} \end{eqnarray} -where the derivatives of functions that depend on the absolute value of $\vec{r}'$ do not contribute due to the cross product as can be seen from equations \eqref{eq:solid:rxp1} and \eqref{eq:solid:rxp2}. +since derivatives of functions that depend on the absolute value of $\vec{r}'$ do not contribute due to the cross product as is illustrated below (equations \eqref{eq:solid:rxp1} and \eqref{eq:solid:rxp2}). \begin{eqnarray} \left(\vec{r}\times\nabla_{\vec{r}}\right)f(r)&=& \left(\begin{array}{l} @@ -335,13 +428,28 @@ r_if'(r)\frac{1}{2r}2r_j-r_jf'(r)\frac{1}{2r}2r_i=0 \label{eq:solid:rxp2} \end{eqnarray} -If the potential at position $\vec{r}$ is considered a sum of atomic potentials $v_{\alpha}(\vec{r}-\vec{\tau}_{\alpha n})$ (atom $n$ of species $\alpha$) -\begin{equation} -V(\vec{r})=\sum_{\alpha}\sum_n v_{\alpha}(\vec{r}-\vec{\tau}_{\alpha n}) -\end{equation} -and the SO projectors are likewise centered on atoms, the SO potential contribution reads +If these projectors are considered to be centered around atom positions $\vec{\tau}_{\alpha n}$ of atoms $n$ of species $\alpha$, the variable $\vec{r}'$ in the previous equations is changed to $\vec{r}'_{\alpha n}=\vec{r}'-\vec{\tau}_{\alpha n}$, which implies +\begin{eqnarray} +r'&\rightarrow&r_{\alpha n}=|\vec{r}'-\vec{\tau}_{\alpha n}|\\ +\Omega_{\vec{r}'}&\rightarrow&\Omega_{\vec{r'}-\vec{\tau}_{\alpha n}}\\ +\delta V_l(r')&\rightarrow&\delta V_l(|\vec{r}'-\vec{\tau}_{\alpha n}|)\\ +u_l(r')&\rightarrow&u_l(|\vec{r}'-\vec{\tau}_{\alpha n}|)\\ +Y_{lm}(\Omega_{\vec{r}'})&\rightarrow& +Y_{lm}(\Omega_{\vec{r}'-\vec{\tau}_{\alpha n}}) +\text{ .} +\end{eqnarray} +Within an iterative treatment on a real space grid consisting of $n_{\text{g}}$ grid points, the sum \begin{equation} +\sum_{\vec{r}''_{\alpha n}} +\sum_{lm}-i\hbar(\vec{r}'_{\alpha n}\times \nabla_{\vec{r}'_{\alpha n}}) +\braket{\vec{r}'_{\alpha n}}{\chi^{\text{SO}}_{lm}} +E^{\text{SO,KB}}_l\braket{\chi^{\text{SO}}_{lm}}{\vec{r}''_{\alpha n}} +\braket{\vec{r}''_{\alpha n}}{\Psi} +\qquad\forall\,\bra{\vec{r}'_{\alpha n}} \end{equation} +to obtain all elements $\bra{\vec{r}'_{\alpha n}}$, involves $n_{\text{g}}^2$ evaluations of equation~\eqref{eq:solid:so_fin} for eeach atom, if the projectors are short-ranged, i.e.\ $\delta V_l=0$ outside a certain cut-off radius. +Thus, this method scales linearly with the number of atoms. + The $E_l^{\text{SO,KB}}$ are given by \begin{equation} E_l^{\text{SO,KB}}= @@ -351,7 +459,4 @@ E_l^{\text{SO,KB}}= {\int_{r'}\int_{r''}\braket{u_l}{r'}\bra{r'}\delta V_l \ket{r''}\braket{r''}{u_l}}= \end{equation} -Finally, to evaluate $V^{\text{SO}}_l\ket{\Psi}$, the integral \ldots -\begin{equation} -\end{equation}