X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fsolid.tex;h=5e69a799a18a5174921aabe05797cc83202675e6;hp=1fc7a17eea47e2ac231e10db76dfc7321a9e3c2c;hb=6a26b9f5593acc0bf19241b2fe79f1acf51fb03e;hpb=f47fcf0c7b7c7e2d5adc294d72a0c914289c584c diff --git a/physics_compact/solid.tex b/physics_compact/solid.tex index 1fc7a17..5e69a79 100644 --- a/physics_compact/solid.tex +++ b/physics_compact/solid.tex @@ -148,7 +148,7 @@ E\ket{\Psi_\text{V}} \text{ .} Ionic potentials, which are spherically symmteric, suggest to treat each angular momentum $l,m$ separately leading to $l$-dependent non-local (NL) model potentials $V_l(r)$ and a total potential \begin{equation} -V=\sum_{l,m}\ket{lm}V_l(r)\bra{lm} \text{ .} +V=\sum_{l,m}\ket{lm}V_l(\vec{r})\bra{lm} \text{ .} \end{equation} In fact, applied to a function, the potential turns out to be non-local in the angular coordinates but local in the radial variable, which suggests to call it asemilocal (SL) potential. @@ -160,7 +160,7 @@ Integral with respect to the radial component needs to be evaluated for each pla A local potential can always be separated from the potential \ldots \begin{equation} -V=\ldots=V_{\text{local}}(r)+\ldots +V=\ldots=V_{\text{local}}(\vec{r})+\ldots \end{equation} \subsubsection{Norm conserving pseudopotentials} @@ -173,102 +173,290 @@ KB transformation \ldots \subsection{Spin-orbit interaction} -Relativistic effects can be incorporated in the normconserving pseudopotential method up to but not including order $\alpha^2$ with $\alpha$ being the fine structure constant. +Relativistic effects can be incorporated in the normconserving pseudopotential method up to but not including terms of order $\alpha^2$ \cite{kleinman80,bachelet82} with $\alpha$ being the fine structure constant. This is advantageous since \ldots With the solutions of the all-electron Dirac equations, the new pseudopotential reads \begin{equation} -V(r)=\sum_{l,m}\left[ -\ket{l+\frac{1}{2},m+{\frac{1}{2}}}V_{l,l+\frac{1}{2}}(r) +V(\vec{r})=\sum_{l,m}\left[ +\ket{l+\frac{1}{2},m+{\frac{1}{2}}}V_{l,l+\frac{1}{2}}(\vec{r}) \bra{l+\frac{1}{2},m+{\frac{1}{2}}} + -\ket{l-\frac{1}{2},m-{\frac{1}{2}}}V_{l,l-\frac{1}{2}}(r) +\ket{l-\frac{1}{2},m-{\frac{1}{2}}}V_{l,l-\frac{1}{2}}(\vec{r}) \bra{l-\frac{1}{2},m-{\frac{1}{2}}} \right] \text{ .} +\label{eq:solid:so_bs1} \end{equation} By defining an averaged potential weighted by the different $j$ degeneracies of the $\ket{l\pm\frac{1}{2}}$ states \begin{equation} \bar{V}_l(r)=\frac{1}{2l+1}\left( -l V_{l,l-\frac{1}{2}}(r)+(l+1)V_{l,l+\frac{1}{2}}(r)\right) +l V_{l,l-\frac{1}{2}}(\vec{r})+(l+1)V_{l,l+\frac{1}{2}}(\vec{r})\right) \end{equation} and a potential describing the difference in the potential with respect to the spin \begin{equation} -V^{\text{SO}}_l(r)=\frac{2}{2l+1}\left( -V_{l,l+\frac{1}{2}}(r)-V_{l,l-\frac{1}{2}}(r)\right) +V^{\text{SO}}_l(\vec{r})=\frac{2}{2l+1}\left( +V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) \end{equation} the total potential can be expressed as \begin{equation} -V(r)=\sum_l \ket{l}\left[\bar{V}_l(r)+V^{\text{SO}}_l(r)LS\right]\bra{l} +V(\vec{r})=\sum_l +\ket{l,m}\left[\bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r})LS\right]\bra{l,m} \text{ ,} +\label{eq:solid:so_bs2} \end{equation} where the first term correpsonds to the mass velocity and Darwin relativistic corrections and the latter is associated with the spin-orbit (SO) coupling. +\begin{proof} +This can be shown by rewriting the $LS$ operator +\begin{equation} +J=L+S \Leftrightarrow J^2=L^2+S^2+2LS \Leftrightarrow +LS=\frac{1}{2}\left(J^2-L^2-S^2\right) +\end{equation} +and corresponding eigenvalue +\begin{eqnarray} +j(j+1)-l(l+1)-s(s+1)&=& +(l\pm\frac{1}{2})(l\pm\frac{1}{2}+1)-l^2-l-\frac{3}{4} \nonumber\\ +&=& +l^2\pm\frac{l}{2}+l\pm\frac{l}{2}+\frac{1}{4}\pm\frac{1}{2}-l^2-l-\frac{3}{4} +\nonumber\\ +&=&\pm(l+\frac{1}{2})-\frac{1}{2}=\left\{\begin{array}{rl} +l & \text{for } j=l+\frac{1}{2}\\ +-(l+1) & \text{for } j=l-\frac{1}{2} +\end{array}\right. +\text{ ,} +\end{eqnarray} +which, if used in equation~\eqref{eq:solid:so_bs2}, gives the same (diagonal) matrix elements +\begin{eqnarray} +\bra{l\pm\frac{1}{2},m\pm\frac{1}{2}}V(\vec{r}) +\ket{l\pm\frac{1}{2},m\pm\frac{1}{2}}&=& +\bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r}) +\frac{1}{2}\left(l(l+1)-j(j+1)-\frac{3}{4}\right) \nonumber\\ +&=&\bar{V}_l(\vec{r})+\frac{1}{2}V^{\text{SO}}_l(\vec{r}) +\cdot\left\{\begin{array}{cl} +l & \text{for } j=l+\frac{1}{2}\\ +-(l+1) & \text{for } j=l-\frac{1}{2} +\end{array}\right. \nonumber\\ +&=&\frac{1}{2l+1}\left(lV_{l,l-\frac{1}{2}}(\vec{r})+ + (l+1)V_{l,l+\frac{1}{2}}(\vec{r})\right)+\nonumber\\ +&&\frac{1}{2l+1} +\left(V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) +\cdot\left\{\begin{array}{c} +l \\ +-(l+1) +\end{array}\right. \nonumber\\ +&=&\left\{\begin{array}{cl} +V_{l,l+\frac{1}{2}}(\vec{r}) & \text{for } j=l+\frac{1}{2}\\ +V_{l,l-\frac{1}{2}}(\vec{r}) & \text{for } j=l-\frac{1}{2} +\end{array}\right. +\end{eqnarray} +as expected and --- in fact --- obtained from equation~\eqref{eq:solid:so_bs1}. +\end{proof} +In order to include the spin-orbit interaction into the scalar-relativistic formalism of a normconserving, non-local pseudopotential, scalar-relativistic in contrast to fully relativistic pseudopotential wavefunctions are needed as a basis for the projectors of the spin-orbit potential. +The transformation +\begin{equation} +L\cdot S=L_xS_x+L_yS_y+L_zS_z +\end{equation} +using the ladder operators +\begin{equation} +L_\pm=L_x\pm iL_y \text{ and } S_\pm=S_x\pm iS_y +\text{ ,} +\end{equation} +with properties +\begin{eqnarray} +L_+S_- & = & (L_x+iL_y)(S_x-iS_y)=L_xS_x-iL_xS_y+iL_yS_x+L_yS_y \\ +L_-S_+ & = & (L_x-iL_y)(S_x+iS_y)=L_xS_x+iL_xS_y-iL_yS_x+L_yS_y +\end{eqnarray} +resulting in +\begin{equation} +L_+S_-+L_-S_+=2(L_xS_x+L_yS_y) +\text{ ,} +\end{equation} +reads +\begin{equation} +L\cdot S=\frac{1}{2}(L_+S_-+L_-S_+)+L_zS_z +\text{ .} +\end{equation} +The contributions of this operator act differently on $\ket{l,m}$ and --- in fact --- depend on the respectively considered spinor component, which is incorporated by $\ket{l,m,\pm}$. +\begin{enumerate} +\item \underline{$L_+S_-$}: + Updates spin down component and only acts on spin up component +\begin{equation} +L_+S_-\ket{l,m,+}=L_+\ket{l,m}S_-\ket{+}= +\sqrt{(l-m)(l+m+1)}\hbar\ket{l,m+1}\hbar\ket{-} +\end{equation} +\item \underline{$L_-S_+$}: + Updates spin up component and only acts on spin down component +\begin{equation} +L_+S_-\ket{l,m,-}=L_+\ket{l,m}S_-\ket{+}= +\sqrt{(l-m)(l+m+1)}\hbar\ket{l,m+1}\hbar\ket{-} +\end{equation} +\item \underline{$L_zS_z$}: Acts on both and updates both spinor components +\begin{equation} +L_zS_z\ket{l,m,\pm}=L_z\ket{l,m}S_z\ket{\pm}= +\pm\frac{1}{2}m\hbar^2\ket{l,m,\pm} +\end{equation} +\end{enumerate} -\subsubsection{Excursus: real space representation suitable for an iterative treatment} +\subsubsection{Excursus: Real space representation within an iterative treatment} In the following, the spin-orbit part is evaluated in real space. Since spin is treated in another subspace, it can be treated separately. -The matrix elements of the orbital angular momentum part of the potential in KB form for orbital angular momentum $l$ read +The matrix elements of the orbital angular momentum part of the potential in KB form read \begin{equation} -\bra{r'}(r\times p)\ket{\chi_{lm}}E^{\text{SO,KB}}_l\braket{\chi_{lm}}{r''} +\sum_{lm} +\bra{\vec{r}'}(r\times p)\ket{\chi_{lm}}E^{\text{SO,KB}}_l +\braket{\chi_{lm}}{\vec{r}''} \text{ .} \end{equation} With \begin{eqnarray} -\bra{r'}p\ket{\chi_{lm}} & = & -i\hbar\nabla_{r'} \braket{r'}{\chi_{lm}} -=-i\hbar\nabla_{r'}\,\chi_{lm}(r') \\ -r\ket{r'} & = & r'\ket{r'} +\bra{\vec{r}'}r\ket{\chi_{lm}} & = & \vec{r}'\braket{\vec{r}'}{\chi_{lm}}\\ +\bra{\vec{r}'}p\ket{\chi_{lm}} & = & -i\hbar\nabla_{\vec{r}'} +\braket{\vec{r}'}{\chi_{lm}} \end{eqnarray} we get \begin{equation} --i\hbar(r'\times \nabla_{r'})\braket{r'}{\chi_{lm}}E^{\text{SO,KB}}_l -\braket{\chi_{lm}}{r''} +-i\hbar\sum_{lm}(\vec{r}'\times \nabla_{\vec{r}'})\braket{\vec{r}'}{\chi_{lm}} +E^{\text{SO,KB}}_l\braket{\chi_{lm}}{\vec{r}''} \text{ .} +\label{eq:solid:so_me} \end{equation} To further evaluate this expression, the KB projectors \begin{equation} -\chi_{lm}=\frac{\ket{\delta V_l^{\text{SO}}\Phi_{lm}}} +\ket{\chi_{lm}}=\frac{\ket{\delta V_l^{\text{SO}}\Phi_{lm}}} {\braket{\delta V_l^{\text{SO}}\Phi_{lm}} {\Phi_{lm}\delta V_l^{\text{SO}}}^{1/2}} \end{equation} -must be known in real space (with respect to $r$). +must be known in real space (with respect to $\vec{r}'$). \begin{equation} -\braket{r'}{\chi_{lm}}= -\frac{\braket{r'}{\delta V_l^{\text{SO}}\Phi_{lm}}}{ +\braket{\vec{r}'}{\chi_{lm}}= +\frac{\braket{\vec{r}'}{\delta V_l^{\text{SO}}\Phi_{lm}}}{ \braket{\delta V_l^{\text{SO}}\Phi_{lm}}{\Phi_{lm}\delta V_l^{\text{SO}}} ^{1/2}} \end{equation} and \begin{equation} -\braket{r'}{\delta V_l^{\text{SO}}\Phi_{lm}}= -\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'}Y_{lm}(\Omega_{r'}) +\braket{\vec{r}'}{\delta V_l^{\text{SO}}\Phi_{lm}}= +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'}Y_{lm}(\Omega_{\vec{r}'}) \text{ .} +\label{eq:solid:so_r1} \end{equation} In this expression, only the spherical harmonics are complex functions. -Thus, the complex conjugate with respect to $r''$ is given by +Thus, the complex conjugate with respect to $\vec{r}''$ is given by \begin{equation} -\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{r''}= -\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}Y^*_{lm}(\Omega_{r''}) +\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{\vec{r}''}= +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}Y^*_{lm}(\Omega_{\vec{r}''}) \text{ .} +\label{eq:solid:so_r2} \end{equation} Using the orthonormality property \begin{equation} \int Y^*_{l'm'}(\Omega_r)Y_{lm}(\Omega_r) d\Omega_r = \delta_{ll'}\delta_{mm'} \label{eq:solid:y_ortho} \end{equation} -of the spherical harmonics, the norm of the $\chi_{lm}$ reduces to +of the spherical harmonics, the squared norm of the $\chi_{lm}$ reduces to \begin{eqnarray} \braket{\delta V_l^{\text{SO}}\Phi_{lm}}{\Phi_{lm}\delta V_l^{\text{SO}}} &=& \int \braket{\delta V_l^{\text{SO}}\Phi_{lm}}{\vec{r}'} -\braket{\vec{r}'}{\Phi_{lm}\delta V_l^{\text{SO}}} d\vec{r'}'\\ +\braket{\vec{r}'}{\Phi_{lm}\delta V_l^{\text{SO}}} d\vec{r}'\\ &=&\int -{\delta V_l^{\text{SO}}}^2(r')\frac{u_l^2(r')}{r'^2}Y^*_{lm}(\Omega_{r'}) -Y_{lm}(\Omega_{r'}) -r'^2 dr' d\Omega_{r'} \\ +{\delta V_l^{\text{SO}}}^2(r')\frac{u_l^2(r')}{r'^2}Y^*_{lm}(\Omega_{\vec{r}'}) +Y_{lm}(\Omega_{\vec{r}'}) +r'^2 dr' d\Omega_{\vec{r}'} \\ &=&\int_{r'} {\delta V_l^{\text{SO}}}^2(r') u_l^2(r') dr' -\int_{\Omega_{r'}}Y^*_{lm}(\Omega_{r'})Y_{lm}(\Omega_{r'}) d\Omega_{r'}\\ -&=&\int_{r'}{\delta V_l^{\text{SO}}}^2(r') u_l^2(r') dr' \text{ .} +\int_{\Omega_{\vec{r}'}}Y^*_{lm}(\Omega_{\vec{r}'})Y_{lm}(\Omega_{\vec{r}'}) d\Omega_{\vec{r}'}\\ +&=&\int_{r'}{\delta V_l^{\text{SO}}}^2(r') u_l^2(r') dr' \text{ .}\\ +&=&\braket{\delta V_l^{\text{SO}}u_l}{u_l\delta V_l^{\text{SO}}} +\end{eqnarray} +To obtain a final expression for the matrix elements \eqref{eq:solid:so_me}, the sum of the products of \eqref{eq:solid:so_r1} and \eqref{eq:solid:so_r2} must be further evaluated. +\begin{eqnarray} +\sum_{lm} +\braket{\vec{r}'}{\delta V_l^{\text{SO}}\Phi_{lm}} +\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{\vec{r}''}&=&\sum_{lm} +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'}Y_{lm}(\Omega_{\vec{r}'}) +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}Y^*_{lm}(\Omega_{\vec{r}''})\nonumber\\ +&=&\sum_l +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}\sum_m +Y^*_{lm}(\Omega_{\vec{r}''})Y_{lm}(\Omega_{\vec{r}'})\nonumber\\ +&=&\sum_l +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''} +P_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)\frac{2l+1}{4\pi}\nonumber\\ +\end{eqnarray} +due to the vector addition theorem +\begin{equation} +P_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)= +\frac{4\pi}{2l+1}\sum_mY^*_{lm}(\Omega_{\vec{r}''})Y_{lm}(\Omega_{\vec{r}'}) +\text{ .} +\end{equation} +In total, the matrix elements of the SO potential can be calculated by +\begin{eqnarray} +&&-i\hbar\sum_{lm}(\vec{r}'\times \nabla_{\vec{r}'})\braket{\vec{r}'}{\chi_{lm}} +E^{\text{SO,KB}}_l\braket{\chi_{lm}}{\vec{r}''}=\nonumber\\ +&=&-i\hbar\sum_l(\vec{r}'\times \nabla_{\vec{r}'}) +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +P_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)\cdot +\frac{E^{\text{SO,KB}}_l\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}} + {\int_{r}{\delta V_l^{\text{SO}}}^2(r) u_l^2(r) dr} \cdot +\frac{2l+1}{4\pi}\nonumber\\ +&=& +-i\hbar\sum_l +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +P'_l\left(\frac{\vec{r}'\vec{r}''}{r'r''}\right)\cdot +\left(\frac{\vec{r}'\times\vec{r}''}{r'r''}\right)\cdot +\frac{E^{\text{SO,KB}}_l\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}} + {\int_{r}{\delta V_l^{\text{SO}}}^2(r) u_l^2(r) dr} \, +\frac{2l+1}{4\pi}\text{ ,}\nonumber\\ +\label{eq:solid:so_fin} +\end{eqnarray} +since derivatives of functions that depend on the absolute value of $\vec{r}'$ do not contribute due to the cross product as is illustrated below (equations \eqref{eq:solid:rxp1} and \eqref{eq:solid:rxp2}). +\begin{eqnarray} +\left(\vec{r}\times\nabla_{\vec{r}}\right)f(r)&=& +\left(\begin{array}{l} +r_y\frac{\partial}{\partial r_z}f(r)-r_z\frac{\partial}{\partial r_y}f(r)\\ +r_z\frac{\partial}{\partial r_x}f(r)-r_x\frac{\partial}{\partial r_z}f(r)\\ +r_x\frac{\partial}{\partial r_y}f(r)-r_y\frac{\partial}{\partial r_x}f(r) +\end{array}\right) +\label{eq:solid:rxp1} +\end{eqnarray} +\begin{eqnarray} +r_i\frac{\partial}{\partial r_j}f(r)-r_j\frac{\partial}{\partial r_i}f(r)&=& +r_if'(r)\frac{\partial}{\partial r_j}(r_x^2+r_y^2+r_z^2)^{1/2}- +r_jf'(r)\frac{\partial}{\partial r_i}(r_x^2+r_y^2+r_z^2)^{1/2}\nonumber\\ +&=& +r_if'(r)\frac{1}{2r}2r_j-r_jf'(r)\frac{1}{2r}2r_i=0 +\label{eq:solid:rxp2} \end{eqnarray} -Finally, to evaluate $V^{\text{SO}}_l\ket{\Psi}$, the integral \ldots +If these projectors are considered to be centered around atom positions $\vec{\tau}_{\alpha n}$ of atoms $n$ of species $\alpha$, the variable $\vec{r}'$ in the previous equations is changed to $\vec{r}'_{\alpha n}=\vec{r}'-\vec{\tau}_{\alpha n}$, which implies +\begin{eqnarray} +r'&\rightarrow&r_{\alpha n}=|\vec{r}'-\vec{\tau}_{\alpha n}|\\ +\Omega_{\vec{r}'}&\rightarrow&\Omega_{\vec{r'}-\vec{\tau}_{\alpha n}}\\ +\delta V_l(r')&\rightarrow&\delta V_l(|\vec{r}'-\vec{\tau}_{\alpha n}|)\\ +u_l(r')&\rightarrow&u_l(|\vec{r}'-\vec{\tau}_{\alpha n}|)\\ +Y_{lm}(\Omega_{\vec{r}'})&\rightarrow& +Y_{lm}(\Omega_{\vec{r}'-\vec{\tau}_{\alpha n}}) +\text{ .} +\end{eqnarray} +Within an iterative treatment on a real space grid consisting of $n_{\text{g}}$ grid points, the sum \begin{equation} +\sum_{\vec{r}''_{\alpha n}} +\sum_{lm}-i\hbar(\vec{r}'_{\alpha n}\times \nabla_{\vec{r}'_{\alpha n}}) +\braket{\vec{r}'_{\alpha n}}{\chi^{\text{SO}}_{lm}} +E^{\text{SO,KB}}_l\braket{\chi^{\text{SO}}_{lm}}{\vec{r}''_{\alpha n}} +\braket{\vec{r}''_{\alpha n}}{\Psi} +\qquad\forall\,\bra{\vec{r}'_{\alpha n}} \end{equation} +to obtain all elements $\bra{\vec{r}'_{\alpha n}}$, involves $n_{\text{g}}^2$ evaluations of equation~\eqref{eq:solid:so_fin} for eeach atom, if the projectors are short-ranged, i.e.\ $\delta V_l=0$ outside a certain cut-off radius. +Thus, this method scales linearly with the number of atoms. + +The $E_l^{\text{SO,KB}}$ are given by +\begin{equation} +E_l^{\text{SO,KB}}= +\frac{\braket{\delta V_lu_l}{u_l\delta V_l}} + {\bra{u_l}\delta V_l\ket{u_l}}= +\frac{\int_{r}\delta V^2_l(r)u^2_l(r)}r^2dr + {\int_{r'}\int_{r''}\braket{u_l}{r'}\bra{r'}\delta V_l +\ket{r''}\braket{r''}{u_l}}= +\end{equation} +