X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fsolid.tex;h=5e69a799a18a5174921aabe05797cc83202675e6;hp=5b79972de4325d530b974865067d61c679ef2100;hb=6a26b9f5593acc0bf19241b2fe79f1acf51fb03e;hpb=cb8c7d0935379dbb747f3cef38ca532f0bbf4f26 diff --git a/physics_compact/solid.tex b/physics_compact/solid.tex index 5b79972..5e69a79 100644 --- a/physics_compact/solid.tex +++ b/physics_compact/solid.tex @@ -208,27 +208,92 @@ This can be shown by rewriting the $LS$ operator \begin{equation} J=L+S \Leftrightarrow J^2=L^2+S^2+2LS \Leftrightarrow LS=\frac{1}{2}\left(J^2-L^2-S^2\right) -\text{ ,} \end{equation} +and corresponding eigenvalue +\begin{eqnarray} +j(j+1)-l(l+1)-s(s+1)&=& +(l\pm\frac{1}{2})(l\pm\frac{1}{2}+1)-l^2-l-\frac{3}{4} \nonumber\\ +&=& +l^2\pm\frac{l}{2}+l\pm\frac{l}{2}+\frac{1}{4}\pm\frac{1}{2}-l^2-l-\frac{3}{4} +\nonumber\\ +&=&\pm(l+\frac{1}{2})-\frac{1}{2}=\left\{\begin{array}{rl} +l & \text{for } j=l+\frac{1}{2}\\ +-(l+1) & \text{for } j=l-\frac{1}{2} +\end{array}\right. +\text{ ,} +\end{eqnarray} which, if used in equation~\eqref{eq:solid:so_bs2}, gives the same (diagonal) matrix elements -\begin{align} +\begin{eqnarray} \bra{l\pm\frac{1}{2},m\pm\frac{1}{2}}V(\vec{r}) -\ket{l\pm\frac{1}{2},m\pm\frac{1}{2}}&= +\ket{l\pm\frac{1}{2},m\pm\frac{1}{2}}&=& \bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r}) -\frac{1}{2}\left(l(l+1)-j(j+1)-\frac{3}{4}\right) \\ -&= \bar{V}_l(\vec{r})+\frac{1}{2}V^{\text{SO}}_l(\vec{r}) -\left\{\begin{array}{rl} --\left(l+\frac{3}{2}\right) & \text{ for } j=l+\frac{1}{2}\\ -\left(l-\frac{1}{2}\right) & \text{ for } j=l-\frac{1}{2} +\frac{1}{2}\left(l(l+1)-j(j+1)-\frac{3}{4}\right) \nonumber\\ +&=&\bar{V}_l(\vec{r})+\frac{1}{2}V^{\text{SO}}_l(\vec{r}) +\cdot\left\{\begin{array}{cl} +l & \text{for } j=l+\frac{1}{2}\\ +-(l+1) & \text{for } j=l-\frac{1}{2} +\end{array}\right. \nonumber\\ +&=&\frac{1}{2l+1}\left(lV_{l,l-\frac{1}{2}}(\vec{r})+ + (l+1)V_{l,l+\frac{1}{2}}(\vec{r})\right)+\nonumber\\ +&&\frac{1}{2l+1} +\left(V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) +\cdot\left\{\begin{array}{c} +l \\ +-(l+1) +\end{array}\right. \nonumber\\ +&=&\left\{\begin{array}{cl} +V_{l,l+\frac{1}{2}}(\vec{r}) & \text{for } j=l+\frac{1}{2}\\ +V_{l,l-\frac{1}{2}}(\vec{r}) & \text{for } j=l-\frac{1}{2} \end{array}\right. -\end{align} -as equation~\eqref{eq:solid:so_bs1} +\end{eqnarray} +as expected and --- in fact --- obtained from equation~\eqref{eq:solid:so_bs1}. +\end{proof} + +In order to include the spin-orbit interaction into the scalar-relativistic formalism of a normconserving, non-local pseudopotential, scalar-relativistic in contrast to fully relativistic pseudopotential wavefunctions are needed as a basis for the projectors of the spin-orbit potential. +The transformation +\begin{equation} +L\cdot S=L_xS_x+L_yS_y+L_zS_z +\end{equation} +using the ladder operators +\begin{equation} +L_\pm=L_x\pm iL_y \text{ and } S_\pm=S_x\pm iS_y +\text{ ,} +\end{equation} +with properties +\begin{eqnarray} +L_+S_- & = & (L_x+iL_y)(S_x-iS_y)=L_xS_x-iL_xS_y+iL_yS_x+L_yS_y \\ +L_-S_+ & = & (L_x-iL_y)(S_x+iS_y)=L_xS_x+iL_xS_y-iL_yS_x+L_yS_y +\end{eqnarray} +resulting in \begin{equation} +L_+S_-+L_-S_+=2(L_xS_x+L_yS_y) +\text{ ,} +\end{equation} +reads +\begin{equation} +L\cdot S=\frac{1}{2}(L_+S_-+L_-S_+)+L_zS_z \text{ .} \end{equation} - -\end{proof} - +The contributions of this operator act differently on $\ket{l,m}$ and --- in fact --- depend on the respectively considered spinor component, which is incorporated by $\ket{l,m,\pm}$. +\begin{enumerate} +\item \underline{$L_+S_-$}: + Updates spin down component and only acts on spin up component +\begin{equation} +L_+S_-\ket{l,m,+}=L_+\ket{l,m}S_-\ket{+}= +\sqrt{(l-m)(l+m+1)}\hbar\ket{l,m+1}\hbar\ket{-} +\end{equation} +\item \underline{$L_-S_+$}: + Updates spin up component and only acts on spin down component +\begin{equation} +L_+S_-\ket{l,m,-}=L_+\ket{l,m}S_-\ket{+}= +\sqrt{(l-m)(l+m+1)}\hbar\ket{l,m+1}\hbar\ket{-} +\end{equation} +\item \underline{$L_zS_z$}: Acts on both and updates both spinor components +\begin{equation} +L_zS_z\ket{l,m,\pm}=L_z\ket{l,m}S_z\ket{\pm}= +\pm\frac{1}{2}m\hbar^2\ket{l,m,\pm} +\end{equation} +\end{enumerate} \subsubsection{Excursus: Real space representation within an iterative treatment}