X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fsolid.tex;h=c4cf86947ad49fa982159d62d439a116024bc4ee;hp=3cb0480306e4452a81de06e3b821bc21369dc47e;hb=fa167b99a2c520549296e61b92d56bbdd44d3849;hpb=5cf9c85d580fb9d18c1f0ab3b6647edcca0b0cf1 diff --git a/physics_compact/solid.tex b/physics_compact/solid.tex index 3cb0480..c4cf869 100644 --- a/physics_compact/solid.tex +++ b/physics_compact/solid.tex @@ -2,6 +2,10 @@ \chapter{Atomic structure} +\chapter{Reciprocal lattice} + +Example of primitive cell ... + \chapter{Electronic structure} \section{Noninteracting electrons} @@ -25,14 +29,22 @@ H=T+V+U\text{ ,} where \begin{eqnarray} T & = & \langle\Psi|\sum_{i=1}^N\frac{-\hbar^2}{2m}\nabla_i^2|\Psi\rangle\\ - & = & \sum_{i=1}^N \int d\vec{r} d\vec{r}' \, + & = & \frac{-\hbar^2}{2m} \sum_{i=1}^N \int d\vec{r} d\vec{r}' \, \langle \Psi | \vec{r} \rangle \langle \vec{r} | - \frac{-\hbar^2}{2m}\nabla_i^2 + \nabla_i^2 | \vec{r}' \rangle \langle \vec{r}' | \Psi \rangle\\ + & = & \frac{-\hbar^2}{2m} \sum_{i=1}^N \int d\vec{r} d\vec{r}' \, + \langle \Psi | \vec{r} \rangle \nabla_{\vec{r}_i} + \langle \vec{r} | \vec{r}' \rangle + \nabla_{\vec{r}'_i} \langle \vec{r}' | \Psi \rangle\\ + & = & \frac{-\hbar^2}{2m} \sum_{i=1}^N \int d\vec{r} d\vec{r}' \, + \nabla_{\vec{r}_i} \langle \Psi | \vec{r} \rangle + \delta_{\vec{r}\vec{r}'} + \nabla_{\vec{r}'_i} \langle \vec{r}' | \Psi \rangle\\ & = & \frac{-\hbar^2}{2m} \sum_{i=1}^N \int d\vec{r} \, - \nabla_i \Psi^*(\vec{r}) \nabla_i \Psi(\vec{r}) + \nabla_{\vec{r}_i} \Psi^*(\vec{r}) \nabla_{\vec{r}_i} \Psi(\vec{r}) \text{ ,} \\ -V & = & V(\vec{r})\Psi^*(\vec{r})\Psi(\vec{r})d\vec{r} \text{ ,} \\ +V & = & \int V(\vec{r})\Psi^*(\vec{r})\Psi(\vec{r})d\vec{r} \text{ ,} \\ U & = & \frac{1}{2}\int\frac{1}{\left|\vec{r}-\vec{r}'\right|} \Psi^*(\vec{r})\Psi^*(\vec{r}')\Psi(\vec{r}')\Psi(\vec{r}) d\vec{r}d\vec{r}' @@ -56,7 +68,7 @@ n_0(\vec{r})=\int \Psi_0^*(\vec{r},\vec{r}_2,\vec{r}_3,\ldots,\vec{r}_N) \end{equation} In 1964, Hohenberg and Kohn showed the opposite and far less obvious result \cite{hohenberg64}. -{\begin{theorem} +\begin{theorem}[Hohenberg / Kohn] For a nondegenerate ground state, the ground-state charge density uniquely determines the external potential in which the electrons reside. \end{theorem} @@ -94,6 +106,97 @@ E_1 + E_2 < E_2 + E_1 + \int n(\vec{r}) \left( V_2(\vec{r})-V_1(\vec{r}) \right) d\vec{r} }_{=0} \end{equation} -is revealed, which proofs the Hohenberg Kohn theorem. \qed +is revealed, which proofs the Hohenberg Kohn theorem.% \qed \end{proof} +\section{Electron-ion interaction} + +\subsection{Pseudopotential theory} + +The basic idea of pseudopotential theory is to only describe the valence electrons, which are responsible for the chemical bonding as well as the electronic properties for the most part. + +\subsubsection{Orthogonalized planewave method} + +Due to the orthogonality of the core and valence wavefunctions, the latter exhibit strong oscillations within the core region of the atom. +This requires a large amount of planewaves $\ket{k}$ to adequatley model the valence electrons. + +In a very general approach, the orthogonalized planewave (OPW) method introduces a new basis set +\begin{equation} +\ket{k}_{\text{OPW}} = \ket{k} - \sum_t \ket{t}\bra{t}k\rangle \text{ ,} +\end{equation} +with $\ket{t}$ being the eigenstates of the core electrons. +The new basis is orthogonal to the core states $\ket{t}$. +\begin{equation} +\braket{t}{k}_{\text{OPW}} = +\braket{t}{k} - \sum_{t'} \braket{t}{t'}\braket{t'}{k} = +\braket{t}{k} - \braket{t}{k}=0 +\end{equation} +The number of planewaves required for reasonably converged electronic structure calculations is tremendously reduced by utilizing the OPW basis set. + +\subsubsection{Pseudopotential method} + +Following the idea of orthogonalized planewaves leads to the pseudopotential idea, which --- in describing only the valence electrons --- effectively removes an undesriable subspace from the investigated problem. + +Let $\ket{\Psi_\text{V}}$ be the wavefunction of a valence electron with the Schr\"odinger equation +\begin{equation} +H \ket{\Psi_\text{V}} = \left(\frac{1}{2m}p^2+V\right)\ket{\Psi_\text{V}}= +E\ket{\Psi_\text{V}} \text{ .} +\end{equation} +\ldots projection operatore $P_\text{C}$ \ldots + +\subsubsection{Semilocal form of the pseudopotential} + +Ionic potentials, which are spherically symmteric, suggest to treat each angular momentum $l,m$ separately leading to $l$-dependent non-local (NL) model potentials $V_l(r)$ and a total potential +\begin{equation} +V=\sum_{l,m}\ket{lm}V_l(r)\bra{lm} \text{ .} +\end{equation} +In fact, applied to a function, the potential turns out to be non-local in the angular coordinates but local in the radial variable, which suggests to call it asemilocal (SL) potential. + +Problem of semilocal potantials become valid once matrix elements need to be computed. +Integral with respect to the radial component needs to be evaluated for each planewave combination, i.e.\ $N(N-1)/2$ integrals. +\begin{equation} +\bra{k+G}V\ket{k+G'} = \ldots +\end{equation} + +A local potential can always be separated from the potential \ldots +\begin{equation} +V=\ldots=V_{\text{local}}(r)+\ldots +\end{equation} + +\subsubsection{Norm conserving pseudopotentials} + +HSC potential \ldots + +\subsubsection{Fully separable form of the pseudopotential} + +KB transformation \ldots + +\subsection{Spin-orbit interaction} + +Relativistic effects can be incorporated in the normconserving pseudopotential method up to but not including order $\alpha^2$ with $\alpha$ being the fine structure constant. +This is advantageous since \ldots +With the solutions of the all-electron Dirac equations, the new pseudopotential reads +\begin{equation} +V(r)=\sum_{l,m}\left[ +\ket{l+\frac{1}{2},m+{\frac{1}{2}}}V_{l,l+\frac{1}{2}}(r) +\bra{l+\frac{1}{2},m+{\frac{1}{2}}} + +\ket{l-\frac{1}{2},m-{\frac{1}{2}}}V_{l,l-\frac{1}{2}}(r) +\bra{l-\frac{1}{2},m-{\frac{1}{2}}} +\right] \text{ .} +\end{equation} +By defining an averaged potential weighted by the different $j$ degeneracies of the $\ket{l\pm\frac{1}{2}}$ states +\begin{equation} +\bar{V}_l(r)=\frac{1}{2l+1}\left( +l V_{l,l-\frac{1}{2}}(r)+(l+1)V_{l,l+\frac{1}{2}}(r)\right) +\end{equation} +and a potential describing the difference in the potential with respect to the spin +\begin{equation} +V^{\text{SO}}_l(r)=\frac{2}{2l+1}\left( +V_{l,l+\frac{1}{2}}(r)-V_{l,l-\frac{1}{2}}(r)\right) +\end{equation} +the total potential can be expressed as +\begin{equation} +V(r)=\sum_l \ket{l}\left[\bar{V}_l(r)+V^{\text{SO}}_l(r)LS\right]\bra{l} +\text{ ,} +\end{equation} +where the first term correpsonds to the mass velocity and Darwin relativistic corrections and the latter is associated with the spin-orbit (SO) coupling.