X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fsolid.tex;h=c4cf86947ad49fa982159d62d439a116024bc4ee;hp=e19b7cef4823afd4f95daf2d2fdc34b7f7df73a3;hb=fa167b99a2c520549296e61b92d56bbdd44d3849;hpb=eac23ae428984d20c62851681234b206ec1e3dc7 diff --git a/physics_compact/solid.tex b/physics_compact/solid.tex index e19b7ce..c4cf869 100644 --- a/physics_compact/solid.tex +++ b/physics_compact/solid.tex @@ -135,18 +135,68 @@ The number of planewaves required for reasonably converged electronic structure \subsubsection{Pseudopotential method} -\subsubsection{Norm conserving pseudopotentials} +Following the idea of orthogonalized planewaves leads to the pseudopotential idea, which --- in describing only the valence electrons --- effectively removes an undesriable subspace from the investigated problem. +Let $\ket{\Psi_\text{V}}$ be the wavefunction of a valence electron with the Schr\"odinger equation \begin{equation} -V=\ket{lm}V_l(r)\bra{lm} +H \ket{\Psi_\text{V}} = \left(\frac{1}{2m}p^2+V\right)\ket{\Psi_\text{V}}= +E\ket{\Psi_\text{V}} \text{ .} \end{equation} +\ldots projection operatore $P_\text{C}$ \ldots -\subsubsection{Fully separable form of the pseudopotential} +\subsubsection{Semilocal form of the pseudopotential} + +Ionic potentials, which are spherically symmteric, suggest to treat each angular momentum $l,m$ separately leading to $l$-dependent non-local (NL) model potentials $V_l(r)$ and a total potential +\begin{equation} +V=\sum_{l,m}\ket{lm}V_l(r)\bra{lm} \text{ .} +\end{equation} +In fact, applied to a function, the potential turns out to be non-local in the angular coordinates but local in the radial variable, which suggests to call it asemilocal (SL) potential. + +Problem of semilocal potantials become valid once matrix elements need to be computed. +Integral with respect to the radial component needs to be evaluated for each planewave combination, i.e.\ $N(N-1)/2$ integrals. +\begin{equation} +\bra{k+G}V\ket{k+G'} = \ldots +\end{equation} + +A local potential can always be separated from the potential \ldots +\begin{equation} +V=\ldots=V_{\text{local}}(r)+\ldots +\end{equation} -\subsection{Spin orbit interaction} +\subsubsection{Norm conserving pseudopotentials} + +HSC potential \ldots +\subsubsection{Fully separable form of the pseudopotential} -\subsubsection{Perturbative treatment} +KB transformation \ldots -\subsubsection{Non-perturbative method} +\subsection{Spin-orbit interaction} +Relativistic effects can be incorporated in the normconserving pseudopotential method up to but not including order $\alpha^2$ with $\alpha$ being the fine structure constant. +This is advantageous since \ldots +With the solutions of the all-electron Dirac equations, the new pseudopotential reads +\begin{equation} +V(r)=\sum_{l,m}\left[ +\ket{l+\frac{1}{2},m+{\frac{1}{2}}}V_{l,l+\frac{1}{2}}(r) +\bra{l+\frac{1}{2},m+{\frac{1}{2}}} + +\ket{l-\frac{1}{2},m-{\frac{1}{2}}}V_{l,l-\frac{1}{2}}(r) +\bra{l-\frac{1}{2},m-{\frac{1}{2}}} +\right] \text{ .} +\end{equation} +By defining an averaged potential weighted by the different $j$ degeneracies of the $\ket{l\pm\frac{1}{2}}$ states +\begin{equation} +\bar{V}_l(r)=\frac{1}{2l+1}\left( +l V_{l,l-\frac{1}{2}}(r)+(l+1)V_{l,l+\frac{1}{2}}(r)\right) +\end{equation} +and a potential describing the difference in the potential with respect to the spin +\begin{equation} +V^{\text{SO}}_l(r)=\frac{2}{2l+1}\left( +V_{l,l+\frac{1}{2}}(r)-V_{l,l-\frac{1}{2}}(r)\right) +\end{equation} +the total potential can be expressed as +\begin{equation} +V(r)=\sum_l \ket{l}\left[\bar{V}_l(r)+V^{\text{SO}}_l(r)LS\right]\bra{l} +\text{ ,} +\end{equation} +where the first term correpsonds to the mass velocity and Darwin relativistic corrections and the latter is associated with the spin-orbit (SO) coupling.