X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=physics_compact%2Fsolid.tex;h=e8c61e1daf2f6742304af5fd348820d2a42bebe3;hp=c4cf86947ad49fa982159d62d439a116024bc4ee;hb=62d768c49f54dc3c03f0e3df3d08c37af1815aeb;hpb=fa167b99a2c520549296e61b92d56bbdd44d3849 diff --git a/physics_compact/solid.tex b/physics_compact/solid.tex index c4cf869..e8c61e1 100644 --- a/physics_compact/solid.tex +++ b/physics_compact/solid.tex @@ -148,7 +148,7 @@ E\ket{\Psi_\text{V}} \text{ .} Ionic potentials, which are spherically symmteric, suggest to treat each angular momentum $l,m$ separately leading to $l$-dependent non-local (NL) model potentials $V_l(r)$ and a total potential \begin{equation} -V=\sum_{l,m}\ket{lm}V_l(r)\bra{lm} \text{ .} +V=\sum_{l,m}\ket{lm}V_l(\vec{r})\bra{lm} \text{ .} \end{equation} In fact, applied to a function, the potential turns out to be non-local in the angular coordinates but local in the radial variable, which suggests to call it asemilocal (SL) potential. @@ -160,7 +160,7 @@ Integral with respect to the radial component needs to be evaluated for each pla A local potential can always be separated from the potential \ldots \begin{equation} -V=\ldots=V_{\text{local}}(r)+\ldots +V=\ldots=V_{\text{local}}(\vec{r})+\ldots \end{equation} \subsubsection{Norm conserving pseudopotentials} @@ -177,26 +177,171 @@ Relativistic effects can be incorporated in the normconserving pseudopotential m This is advantageous since \ldots With the solutions of the all-electron Dirac equations, the new pseudopotential reads \begin{equation} -V(r)=\sum_{l,m}\left[ -\ket{l+\frac{1}{2},m+{\frac{1}{2}}}V_{l,l+\frac{1}{2}}(r) +V(\vec{r})=\sum_{l,m}\left[ +\ket{l+\frac{1}{2},m+{\frac{1}{2}}}V_{l,l+\frac{1}{2}}(\vec{r}) \bra{l+\frac{1}{2},m+{\frac{1}{2}}} + -\ket{l-\frac{1}{2},m-{\frac{1}{2}}}V_{l,l-\frac{1}{2}}(r) +\ket{l-\frac{1}{2},m-{\frac{1}{2}}}V_{l,l-\frac{1}{2}}(\vec{r}) \bra{l-\frac{1}{2},m-{\frac{1}{2}}} \right] \text{ .} \end{equation} By defining an averaged potential weighted by the different $j$ degeneracies of the $\ket{l\pm\frac{1}{2}}$ states \begin{equation} \bar{V}_l(r)=\frac{1}{2l+1}\left( -l V_{l,l-\frac{1}{2}}(r)+(l+1)V_{l,l+\frac{1}{2}}(r)\right) +l V_{l,l-\frac{1}{2}}(\vec{r})+(l+1)V_{l,l+\frac{1}{2}}(\vec{r})\right) \end{equation} and a potential describing the difference in the potential with respect to the spin \begin{equation} -V^{\text{SO}}_l(r)=\frac{2}{2l+1}\left( -V_{l,l+\frac{1}{2}}(r)-V_{l,l-\frac{1}{2}}(r)\right) +V^{\text{SO}}_l(\vec{r})=\frac{2}{2l+1}\left( +V_{l,l+\frac{1}{2}}(\vec{r})-V_{l,l-\frac{1}{2}}(\vec{r})\right) \end{equation} the total potential can be expressed as \begin{equation} -V(r)=\sum_l \ket{l}\left[\bar{V}_l(r)+V^{\text{SO}}_l(r)LS\right]\bra{l} +V(\vec{r})=\sum_l +\ket{l}\left[\bar{V}_l(\vec{r})+V^{\text{SO}}_l(\vec{r})LS\right]\bra{l} \text{ ,} \end{equation} where the first term correpsonds to the mass velocity and Darwin relativistic corrections and the latter is associated with the spin-orbit (SO) coupling. + + +\subsubsection{Excursus: real space representation within an iterative treatment} + +In the following, the spin-orbit part is evaluated in real space. +Since spin is treated in another subspace, it can be treated separately. +The matrix elements of the orbital angular momentum part of the potential in KB form for orbital angular momentum $l$ read +\begin{equation} +\bra{\vec{r'}}(r\times p)\ket{\chi_{lm}}E^{\text{SO,KB}}_l\braket{\chi_{lm}}{\vec{r''}} +\text{ .} +\end{equation} +With +\begin{eqnarray} +\bra{\vec{r'}}p\ket{\chi_{lm}} & = & -i\hbar\nabla_{\vec{r'}} \braket{\vec{r'}}{\chi_{lm}} +=-i\hbar\nabla_{\vec{r'}}\,\chi_{lm}(\vec{r'}) \\ +r\ket{\vec{r'}} & = & r'\ket{\vec{r'}} +\end{eqnarray} +we get +\begin{equation} +-i\hbar(\vec{r'}\times \nabla_{\vec{r'}})\braket{\vec{r'}}{\chi_{lm}} +E^{\text{SO,KB}}_l\braket{\chi_{lm}}{\vec{r''}} +\text{ .} +\label{eq:solid:so_me} +\end{equation} +To further evaluate this expression, the KB projectors +\begin{equation} +\chi_{lm}=\frac{\ket{\delta V_l^{\text{SO}}\Phi_{lm}}} +{\braket{\delta V_l^{\text{SO}}\Phi_{lm}} + {\Phi_{lm}\delta V_l^{\text{SO}}}^{1/2}} +\end{equation} +must be known in real space (with respect to $\vec{r'}$). +\begin{equation} +\braket{\vec{r'}}{\chi_{lm}}= +\frac{\braket{\vec{r'}}{\delta V_l^{\text{SO}}\Phi_{lm}}}{ +\braket{\delta V_l^{\text{SO}}\Phi_{lm}}{\Phi_{lm}\delta V_l^{\text{SO}}} +^{1/2}} +\end{equation} +and +\begin{equation} +\braket{\vec{r'}}{\delta V_l^{\text{SO}}\Phi_{lm}}= +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'}Y_{lm}(\Omega_{r'}) +\text{ .} +\label{eq:solid:so_r1} +\end{equation} +In this expression, only the spherical harmonics are complex functions. +Thus, the complex conjugate with respect to $\vec{r''}$ is given by +\begin{equation} +\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{\vec{r''}}= +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}Y^*_{lm}(\Omega_{r''}) +\text{ .} +\label{eq:solid:so_r2} +\end{equation} +Using the orthonormality property +\begin{equation} +\int Y^*_{l'm'}(\Omega_r)Y_{lm}(\Omega_r) d\Omega_r = \delta_{ll'}\delta_{mm'} +\label{eq:solid:y_ortho} +\end{equation} +of the spherical harmonics, the squared norm of the $\chi_{lm}$ reduces to +\begin{eqnarray} +\braket{\delta V_l^{\text{SO}}\Phi_{lm}}{\Phi_{lm}\delta V_l^{\text{SO}}} &=& +\int \braket{\delta V_l^{\text{SO}}\Phi_{lm}}{\vec{r'}} +\braket{\vec{r'}}{\Phi_{lm}\delta V_l^{\text{SO}}} d\vec{r'}\\ +&=&\int +{\delta V_l^{\text{SO}}}^2(r')\frac{u_l^2(r')}{r'^2}Y^*_{lm}(\Omega_{r'}) +Y_{lm}(\Omega_{r'}) +r'^2 dr' d\Omega_{r'} \\ +&=&\int_{r'} +{\delta V_l^{\text{SO}}}^2(r') u_l^2(r') dr' +\int_{\Omega_{r'}}Y^*_{lm}(\Omega_{r'})Y_{lm}(\Omega_{r'}) d\Omega_{r'}\\ +&=&\int_{r'}{\delta V_l^{\text{SO}}}^2(r') u_l^2(r') dr' \text{ .} +\end{eqnarray} +To obtain a final expression for the matrix elements \eqref{eq:solid:so_me}, the product of \eqref{eq:solid:so_r1} and \eqref{eq:solid:so_r2} must be further evaluated. +\begin{eqnarray} +\braket{\vec{r'}}{\delta V_l^{\text{SO}}\Phi_{lm}} +\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{\vec{r''}}&=& +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'}Y_{lm}(\Omega_{r'}) +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}Y^*_{lm}(\Omega_{r''})\nonumber\\ +&=& +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''} +Y^*_{lm}(\Omega_{r''})Y_{lm}(\Omega_{r'}) +\end{eqnarray} +and if all states with magnetic quantum numbers $m=-l,-l+1,\ldots,l-1,l$ that contribute to the potential for angular momentum $l$ are considered +\begin{equation} +\braket{\vec{r'}}{\delta V_l^{\text{SO}}\Phi_{lm}} +\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{\vec{r''}}= +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''} +\sum_mY^*_{lm}(\Omega_{r''})Y_{lm}(\Omega_{r'}) \text{ ,} +\end{equation} +which can be rewritten as +\begin{equation} +\braket{\vec{r'}}{\delta V_l^{\text{SO}}\Phi_{lm}} +\braket{\Phi_{lm}\delta V_l^{\text{SO}}}{\vec{r''}}= +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''} +\frac{2l+1}{4\pi}P_l\left(\frac{\vec{r'}\vec{r''}}{r'r''}\right) +\end{equation} +using the vector addition theorem +\begin{equation} +P_l\left(\frac{\vec{r'}\vec{r''}}{r'r''}\right)= +\frac{4\pi}{2l+1}\sum_mY^*_{lm}(\Omega_{r''})Y_{lm}(\Omega_{r'}) +\end{equation} +In total, the matrix elements of the potential for angular momentum $l$ can be calculated as +\begin{eqnarray} +\bra{\vec{r'}}V^{\text{KB,SO}}\ket{\vec{r''}}&=& +\bra{\vec{r'}}(r\times p)\ket{\chi_{lm}}E^{\text{SO,KB}}_l +\braket{\chi_{lm}}{\vec{r''}}\\ +&=& +-i\hbar(\vec{r'}\times \nabla_{\vec{r'}}) +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +P_l\left(\frac{\vec{r'}\vec{r''}}{r'r''}\right)\times\nonumber\\ +&&\times\frac{E^{\text{SO,KB}}_l\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}} + {\int_{r}{\delta V_l^{\text{SO}}}^2(r) u_l^2(r) dr} \, +\frac{2l+1}{4\pi}\\ +&=& +-i\hbar +\delta V_l^{\text{SO}}(r')\frac{u_l(r')}{r'} +P'_l\left(\frac{\vec{r'}\vec{r''}}{r'r''}\right)\times\nonumber\\ +&&\left(\frac{\vec{r'}\times\vec{r''}}{r'r''}\right) +\frac{E^{\text{SO,KB}}_l\delta V_l^{\text{SO}}(r'')\frac{u_l(r'')}{r''}} + {\int_{r}{\delta V_l^{\text{SO}}}^2(r) u_l^2(r) dr} \, +\frac{2l+1}{4\pi} +\end{eqnarray} +If the potential at position $\vec{r}$ is considered a sum of atomic potentials $v_{\alpha}(\vec{r}-\vec{\tau}_{\alpha n})$ (atom $n$ of species $\alpha$) +\begin{equation} +V(\vec{r})=\sum_{\alpha}\sum_n v_{\alpha}(\vec{r}-\vec{\tau}_{\alpha n}) +\end{equation} +and the SO projectors are likewise centered on atoms, the SO potential contribution reads +\begin{equation} +\end{equation} +The $E_l^{\text{SO,KB}}$ are given by +\begin{equation} +E_l^{\text{SO,KB}}= +\frac{\braket{\delta V_lu_l}{u_l\delta V_l}} + {\bra{u_l}\delta V_l\ket{u_l}}= +\frac{\int_{r}\delta V^2_l(r)u^2_l(r)}r^2dr + {\int_{r'}\int_{r''}\braket{u_l}{r'}\bra{r'}\delta V_l +\ket{r''}\braket{r''}{u_l}}= +\end{equation} +Finally, to evaluate $V^{\text{SO}}_l\ket{\Psi}$, the integral \ldots +\begin{equation} +\end{equation} +