X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=posic%2Fposter%2Femrs2008.tex;h=1226f1bda2a65b9f6d1db8f915b6bd89c2439989;hp=5945eac895ef73d19ff7c5102956a9a480781a2a;hb=17d5c879c418790a154098e51c524eca183c4d98;hpb=b05b08319c0aedb26856e20f744a54215a196003 diff --git a/posic/poster/emrs2008.tex b/posic/poster/emrs2008.tex index 5945eac..1226f1b 100644 --- a/posic/poster/emrs2008.tex +++ b/posic/poster/emrs2008.tex @@ -1,5 +1,5 @@ \documentclass[portrait,a0b,final]{a0poster} -\usepackage{epsf,psfig,pstricks,multicol,pst-grad,color} +\usepackage{epsf,psfig,pstricks,multicol,pst-grad,pst-node,color} \usepackage{graphicx,amsmath,amssymb} \graphicspath{{../img/}} \usepackage[english,german]{babel} @@ -22,11 +22,18 @@ \background{.40 .48 .71}{.99 .99 .99}{0.5} \newrgbcolor{si-yellow}{.6 .6 0} +\newrgbcolor{hb}{0.75 0.77 0.89} +\newrgbcolor{lbb}{0.75 0.8 0.88} +\newrgbcolor{lachs}{1.0 .93 .81} % Groesse der einzelnen Spalten als Anteil der Gesamt-Textbreite \renewcommand{\columnfrac}{.31} +% potential +\newcommand{\pot}{\mathcal{V}} + % header +\vspace{-18.5cm} \begin{header} \centerline{{\Huge \bfseries Molecular dynamics simulation of defect formation and precipitation}} @@ -65,16 +72,19 @@ \begin{poster} +\vspace{-1cm} \begin{pcolumn} \begin{pbox} \section*{Motivation} - {\bf Reasons for understanding the 3C-SiC precipitation process} + {\bf Importance of the 3C-SiC precipitation process in silicon} \begin{itemize} - \item Significant technological progress - in 3C-SiC wide band gap semiconductor thin film formation [1]. - \item New perspectives for processes relying upon prevention of - precipitation, e.g. fabrication of strained pseudomorphic - $\text{Si}_{1-y}\text{C}_y$ heterostructures [2]. + \item SiC is a promising wide band gap material for high-temperature, + high-power, high-frequency semiconductor devices [1]. + \item 3C-SiC epitaxial thin film formation on Si requires detailed + knowledge of SiC nucleation. + \item Fabrication of high carbon doped, strained pseudomorphic + $\text{Si}_{1-y}\text{C}_y$ layers requires suppression of + 3C-SiC nucleation [2]. \end{itemize} {\tiny [1] J. H. Edgar, J. Mater. Res. 7 (1992) 235.}\\ @@ -82,6 +92,7 @@ [2] J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, J. W. Mayer, J. Appl. Phys. 79 (1996) 637.} \end{pbox} + \vspace{-0.45cm} \begin{pbox} \section*{Crystalline silicon and cubic silicon carbide} {\bf Lattice types and unit cells:} @@ -107,19 +118,18 @@ \includegraphics[width=10cm]{sic_unit_cell.eps} \end{minipage} \end{pbox} + \vspace{-0.45cm} \begin{pbox} \section*{Supposed Si to 3C-SiC conversion} {\bf Schematic of the conversion mechanism}\\\\ - \begin{minipage}{7.8cm} - \includegraphics[width=7.7cm]{sic_prec_seq_01.eps} + \begin{minipage}[c]{8.8cm} + \includegraphics[width=8.0cm]{sic_prec_seq_01.eps} \end{minipage} - \hspace{0.6cm} - \begin{minipage}{7.8cm} - \includegraphics[width=7.7cm]{sic_prec_seq_02.eps} + \begin{minipage}[c]{8.8cm} + \includegraphics[width=8.0cm]{sic_prec_seq_02.eps} \end{minipage} - \hspace{0.6cm} - \begin{minipage}{7.8cm} - \includegraphics[width=7.7cm]{sic_prec_seq_03.eps} + \begin{minipage}[c]{8.1cm} + \includegraphics[width=8.0cm]{sic_prec_seq_03.eps} \end{minipage} \vspace{1cm} \begin{enumerate} @@ -130,39 +140,293 @@ \vspace{1cm} {\bf Experimental observations} [3] \begin{itemize} - \item Minimal diameter of precipitation: 2 - 4 nm + \item Minimal radius of precipitates: 2 - 4 nm \item Equal orientation of c-Si and 3C-SiC (hkl)-planes \end{itemize} {\tiny [3] J. K. N. Lindner, Appl. Phys. A 77 (2003) 27. } \end{pbox} + \vspace{-0.45cm} + \begin{pbox} + \section*{Simulation details} + {\bf MD basics:} + \begin{itemize} + \item Microscopic description of N particles + \item Analytical interaction potential + \item Propagation rule in 6N-dim. phase space: + Hamilton's equations of motion + \item Observables obtained by time or ensemble averages + \end{itemize} + {\bf Application details:}\\[0.5cm] + \begin{minipage}{17cm} + \begin{itemize} + \item Integrator: Velocity Verlet, timestep: 1 fs + \item Ensemble: isothermal-isobaric NPT [4] + \begin{itemize} + \item Berendsen thermostat: + $\tau_{\text{T}}=100\text{ fs}$ + \item Brendsen barostat:\\ + $\tau_{\text{P}}=100\text{ fs}$, + $\beta^{-1}=100\text{ GPa}$ + \end{itemize} + \item Potential: Tersoff-like bond order potential [5] + \[ + E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad + \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] + \] + \end{itemize} + \end{minipage} + \begin{minipage}{9cm} + \includegraphics[width=9cm]{tersoff_angle.eps} + \end{minipage}\\[1cm] + {\tiny + [4] L. Verlet, Phys. Rev. 159 (1967) 98.}\\ + {\tiny + [5] P. Erhart and K. Albe, Phys. Rev. B 71 (2005) 35211.} + \end{pbox} \end{pcolumn} \begin{pcolumn} \begin{pbox} - \section*{Simulation algorithm} - Hier die Simulation rein! - \end{pbox} - \begin{pbox} - \section*{Results} - Hier die Resultate! + \section*{Interstitial configurations} + {\bf Simulation sequence:}\\ + +\begin{minipage}{15cm} +{\small + \begin{pspicture}(0,0)(14,14) + \rput(7,12.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{ + \parbox{14cm}{ + \begin{itemize} + \item Initial configuration: $9\times9\times9$ unit cells Si + \item Periodic boundary conditions + \item $T=0\text{ K}$, $p=0\text{ bar}$ + \end{itemize} + }}}} +\rput(7,6){\rnode{insert}{\psframebox{ + \parbox{14cm}{ + Insertion of C / Si atom: + \begin{itemize} + \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral} + (${\color{red}\triangleleft}$) + \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal} + (${\color{green}\triangleright}$) + \item $(-1/8,-1/8,-1/4)$, $(-3/8,-3/8,-1/4)$\\ + $\rightarrow$ {\color{magenta}110 dumbbell} + (${\color{magenta}\Box}$,$\circ$) + \item random positions (critical distance check) + \end{itemize} + }}}} + \rput(7,1.5){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{ + \parbox{7cm}{ + Relaxation time: 2 ps + }}}} + \ncline[]{->}{init}{insert} + \ncline[]{->}{insert}{cool} + \end{pspicture} +} +\end{minipage} +\begin{minipage}{10cm} + \includegraphics[width=11cm]{unit_cell_s.eps} +\end{minipage} + + {\bf Si self-interstitial results:}\\ + +{\small + \begin{minipage}[t]{8.5cm} + \underline{Tetrahedral}\\ + $E_f=3.41$ eV\\ + \includegraphics[width=8cm]{si_self_int_tetra_0.eps} + \end{minipage} + \begin{minipage}[t]{8.5cm} + \underline{110 dumbbell}\\ + $E_f=4.39$ eV\\ + \includegraphics[width=8cm]{si_self_int_dumbbell_0.eps} + \end{minipage} + \begin{minipage}[t]{8.5cm} + \underline{Hexagonal}\\ + $E_f^{\star}\approx4.48$ eV (unstable!)\\ + \includegraphics[width=8cm]{si_self_int_hexa_0.eps} + \end{minipage}\\[1cm] + + \underline{Random insertion}\\ + + \begin{minipage}{8.5cm} + $E_f=3.97$ eV\\ + \includegraphics[width=8cm]{si_self_int_rand_397_0.eps} + \end{minipage} + \begin{minipage}{8.5cm} + $E_f=3.75$ eV\\ + \includegraphics[width=8cm]{si_self_int_rand_375_0.eps} + \end{minipage} + \begin{minipage}{8.5cm} + $E_f=3.56$ eV\\ + \includegraphics[width=8cm]{si_self_int_rand_356_0.eps} + \end{minipage}\\[1cm] +} + + {\bf C in Si interstitial results:}\\ + +{\small + \begin{minipage}[t]{8.5cm} + \underline{Tetrahedral}\\ + $E_f=2.67$ eV\\ + \includegraphics[width=8cm]{c_in_si_int_tetra_0.eps} + \end{minipage} + \begin{minipage}[t]{8.5cm} + \underline{110 dumbbell}\\ + $E_f=1.76$ eV\\ + \includegraphics[width=8cm]{c_in_si_int_dumbbell_0.eps} + \end{minipage} + \begin{minipage}[t]{8.5cm} + \underline{Hexagonal}\\ + $E_f^{\star}\approx5.6$ eV (unstable!)\\ + \includegraphics[width=8cm]{c_in_si_int_hexa_0.eps} + \end{minipage}\\[1cm] +} +\begin{minipage}{17cm} +\underline{\flq100\frq{} dumbbell configuration} +\begin{itemize} + \item $E_f=0.47$ eV + \item Very often observed + \item Most energetically favorable configuration + \item Experimental evidence [6] +\end{itemize} +\end{minipage} +\begin{minipage}{8cm} +\includegraphics[width=8cm]{c_in_si_int_001db_0.eps} +\end{minipage}\\[1cm] +\begin{center} +\includegraphics[width=26cm]{100-c-si-db_s.eps}\\[0.35cm] +\end{center} +{\tiny + [6] G. D. Watkins and K. L. Brower, Phys. Rev. Lett. 36 (1976) 1329.} + \end{pbox} + \end{pcolumn} \begin{pcolumn} \begin{pbox} - \section*{Structural/compositional information} - blabla + \section*{High C concentration simulations} + + {\bf Simulation sequence:}\\ + +{\small + \begin{pspicture}(0,0)(30,13) + % nodes + \rput(7.5,11){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{ + \parbox{15cm}{ + \begin{itemize} + \item Initial configuration: $31\times31\times31$ unit cells Si + \item Periodic boundary conditions + \item $T=450\, ^{\circ}\textrm{C}$, $p=0\text{ bar}$ + \item Equilibration of $E_{kin}$ and $E_{pot}$ + \end{itemize} + }}}} + \rput(7.5,5){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{ + \parbox{15cm}{ + Insertion of 6000 carbon atoms at constant\\ + temperature into $V_1$ or $V_2$ or $V_3$: + \begin{itemize} + \item Total simulation volume $V_1$ + \item Volume of minimal 3C-SiC precipitation $V_2$ + \item Volume of necessary amount of Si $V_3$ + \end{itemize} + }}}} + \rput(7.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{ + \parbox{8cm}{ + Cooling down to $20\, ^{\circ}\textrm{C}$ + }}}} + \ncline[]{->}{init}{insert} + \ncline[]{->}{insert}{cool} + \psframe[fillstyle=solid,fillcolor=white](16,2.6)(26,12.6) + \psframe[fillstyle=solid,fillcolor=lightgray](18,4.6)(24,10.6) + \psframe[fillstyle=solid,fillcolor=gray](18.5,5.1)(23.5,10.1) + \rput(9,5.4){\pnode{in1}} + \rput(15,5.4){\pnode{in-1}} + \rput(17,7.2){\pnode{ins1}} + \rput(14,4.2){\pnode{in2}} + \rput(15,4.2){\pnode{in-2}} + \rput(18.25,6.88){\pnode{ins2}} + \rput(12,3.0){\pnode{in3}} + \rput(15,3.0){\pnode{in-3}} + \rput(21,7.6){\pnode{ins3}} + \ncline[linewidth=0.05]{->}{in-1}{ins1} + \ncline[linewidth=0.05]{->}{in-2}{ins2} + \ncline[linewidth=0.05]{->}{in-3}{ins3} + \ncline[linewidth=0.05]{-}{in1}{in-1} + \ncline[linewidth=0.05]{-}{in2}{in-2} + \ncline[linewidth=0.05]{-}{in3}{in-3} + \end{pspicture} +} + {\bf Results:}\\ + Si-C and C-C pair correlation function:\\ + \hspace*{1.3cm} \includegraphics[width=22cm]{pc_si-c_c-c.eps} + \begin{center} + {\tiny + {\bf Dashed vertical lines:} Further calculated C-Si distances + in the \flq100\frq{} C-Si dumbbell interstitial configuration}\\[0.5cm] + \end{center} + Si-Si pair correlation function:\\ + \hspace*{1.3cm} \includegraphics[width=22cm]{pc_si-si.eps}\\ + {\bf Interpretation:} + {\small + \begin{itemize} + \item C-C peak at 0.15 nm similar to next neighbour distance of graphite + or diamond\\ + $\Rightarrow$ Formation of strong C-C bonds + (almost only for high C concentrations) + \item Si-C peak at 0.19 nm similar to next neighbour distance in 3C-SiC + \item C-C peak at 0.31 nm equals C-C distance in 3C-SiC\\ + (due to concatenated, differently oriented + \flq100\frq{} dumbbell interstitials) + \item Si-Si shows non-zero g(r) values around 0.31 nm like in 3C-SiC\\ + and a decrease at regular distances\\ + (no clear peak, + interval of enhanced g(r) corresponds to C-C peak width) + \item Low C concentration (i.e. $V_1$): + The \flq100\frq{} dumbbell configuration + \begin{itemize} + \item is identified to stretch the Si-Si next neighbour distance + to 0.3 nm + \item is identified to contribute to the Si-C peak at 0.19 nm + \item explains further C-Si peaks (dashed vertical lines) + \end{itemize} + $\Rightarrow$ C atoms are first elements arranged at distances + expected for 3C-SiC\\ + $\Rightarrow$ C atoms pull the Si atoms into the right + configuration at a later stage + \item High C concentration (i.e. $V_2$ and $V_3$): + \begin{itemize} + \item High amount of damage introduced into the system + \item Short range order observed but almost no long range order + \end{itemize} + $\Rightarrow$ Start of amorphous SiC-like phase formation\\ + $\Rightarrow$ Higher temperatures required for proper SiC formation + \end{itemize} + } + \end{pbox} + \vspace{-2cm} \begin{pbox} - \section*{Recipe for thick films of ordered lamellae} - blabla + \section*{Conclusion} + \begin{itemize} + \item \flq100\frq{} C-Si dumbbell interstitial configuration is observed + to be the energetically most favorable configuration + \item For low C concentrations C atoms introduced as differently + oriented C-Si dumbbells in c-Si are properly arranged + for 3C-SiC formation + \item For high C concentrations an amorphous SiC-like phase is observed + which suggests higher temperature simulation runs for proper + 3C-SiC formation + \end{itemize} \end{pbox} + \vspace{-2cm} \begin{pbox} - \section*{Conclusions} - Hier die Zusammenfassung + One of us (F. Z.) wants to acknowledge financial support by the\\ + {\bf Bayerische Forschungsstiftung} (DPA-61/05). \end{pbox} \end{pcolumn}