X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=posic%2Fposter%2Femrs2008.tex;h=1226f1bda2a65b9f6d1db8f915b6bd89c2439989;hp=b0333498ecdc0988fa768798732026335e09e094;hb=17d5c879c418790a154098e51c524eca183c4d98;hpb=93d5f82c58eb9461e762cf1ef12a179fe33c24d1 diff --git a/posic/poster/emrs2008.tex b/posic/poster/emrs2008.tex index b033349..1226f1b 100644 --- a/posic/poster/emrs2008.tex +++ b/posic/poster/emrs2008.tex @@ -22,6 +22,9 @@ \background{.40 .48 .71}{.99 .99 .99}{0.5} \newrgbcolor{si-yellow}{.6 .6 0} +\newrgbcolor{hb}{0.75 0.77 0.89} +\newrgbcolor{lbb}{0.75 0.8 0.88} +\newrgbcolor{lachs}{1.0 .93 .81} % Groesse der einzelnen Spalten als Anteil der Gesamt-Textbreite \renewcommand{\columnfrac}{.31} @@ -30,7 +33,7 @@ \newcommand{\pot}{\mathcal{V}} % header -\vspace{-18cm} +\vspace{-18.5cm} \begin{header} \centerline{{\Huge \bfseries Molecular dynamics simulation of defect formation and precipitation}} @@ -69,17 +72,19 @@ \begin{poster} -%\vspace{-6cm} +\vspace{-1cm} \begin{pcolumn} \begin{pbox} \section*{Motivation} - {\bf Reasons for understanding the 3C-SiC precipitation process} + {\bf Importance of the 3C-SiC precipitation process in silicon} \begin{itemize} - \item Significant technological progress - in 3C-SiC wide band gap semiconductor thin film formation [1]. - \item New perspectives for processes relying upon prevention of - precipitation, e.g. fabrication of strained pseudomorphic - $\text{Si}_{1-y}\text{C}_y$ heterostructures [2]. + \item SiC is a promising wide band gap material for high-temperature, + high-power, high-frequency semiconductor devices [1]. + \item 3C-SiC epitaxial thin film formation on Si requires detailed + knowledge of SiC nucleation. + \item Fabrication of high carbon doped, strained pseudomorphic + $\text{Si}_{1-y}\text{C}_y$ layers requires suppression of + 3C-SiC nucleation [2]. \end{itemize} {\tiny [1] J. H. Edgar, J. Mater. Res. 7 (1992) 235.}\\ @@ -87,6 +92,7 @@ [2] J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, J. W. Mayer, J. Appl. Phys. 79 (1996) 637.} \end{pbox} + \vspace{-0.45cm} \begin{pbox} \section*{Crystalline silicon and cubic silicon carbide} {\bf Lattice types and unit cells:} @@ -112,19 +118,18 @@ \includegraphics[width=10cm]{sic_unit_cell.eps} \end{minipage} \end{pbox} + \vspace{-0.45cm} \begin{pbox} \section*{Supposed Si to 3C-SiC conversion} {\bf Schematic of the conversion mechanism}\\\\ - \begin{minipage}{7.8cm} - \includegraphics[width=7.7cm]{sic_prec_seq_01.eps} + \begin{minipage}[c]{8.8cm} + \includegraphics[width=8.0cm]{sic_prec_seq_01.eps} \end{minipage} - \hspace{0.6cm} - \begin{minipage}{7.8cm} - \includegraphics[width=7.7cm]{sic_prec_seq_02.eps} + \begin{minipage}[c]{8.8cm} + \includegraphics[width=8.0cm]{sic_prec_seq_02.eps} \end{minipage} - \hspace{0.6cm} - \begin{minipage}{7.8cm} - \includegraphics[width=7.7cm]{sic_prec_seq_03.eps} + \begin{minipage}[c]{8.1cm} + \includegraphics[width=8.0cm]{sic_prec_seq_03.eps} \end{minipage} \vspace{1cm} \begin{enumerate} @@ -135,13 +140,14 @@ \vspace{1cm} {\bf Experimental observations} [3] \begin{itemize} - \item Minimal diameter of precipitation: 2 - 4 nm + \item Minimal radius of precipitates: 2 - 4 nm \item Equal orientation of c-Si and 3C-SiC (hkl)-planes \end{itemize} {\tiny [3] J. K. N. Lindner, Appl. Phys. A 77 (2003) 27. } \end{pbox} + \vspace{-0.45cm} \begin{pbox} \section*{Simulation details} {\bf MD basics:} @@ -190,7 +196,7 @@ \begin{minipage}{15cm} {\small \begin{pspicture}(0,0)(14,14) - \rput(7,12.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{ + \rput(7,12.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{ \parbox{14cm}{ \begin{itemize} \item Initial configuration: $9\times9\times9$ unit cells Si @@ -212,9 +218,9 @@ \item random positions (critical distance check) \end{itemize} }}}} - \rput(7,1.5){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{ + \rput(7,1.5){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{ \parbox{7cm}{ - Relaxation time: $2\, ps$ + Relaxation time: 2 ps }}}} \ncline[]{->}{init}{insert} \ncline[]{->}{insert}{cool} @@ -227,30 +233,200 @@ {\bf Si self-interstitial results:}\\ +{\small + \begin{minipage}[t]{8.5cm} + \underline{Tetrahedral}\\ + $E_f=3.41$ eV\\ + \includegraphics[width=8cm]{si_self_int_tetra_0.eps} + \end{minipage} + \begin{minipage}[t]{8.5cm} + \underline{110 dumbbell}\\ + $E_f=4.39$ eV\\ + \includegraphics[width=8cm]{si_self_int_dumbbell_0.eps} + \end{minipage} + \begin{minipage}[t]{8.5cm} + \underline{Hexagonal}\\ + $E_f^{\star}\approx4.48$ eV (unstable!)\\ + \includegraphics[width=8cm]{si_self_int_hexa_0.eps} + \end{minipage}\\[1cm] + + \underline{Random insertion}\\ + \begin{minipage}{8.5cm} + $E_f=3.97$ eV\\ + \includegraphics[width=8cm]{si_self_int_rand_397_0.eps} + \end{minipage} + \begin{minipage}{8.5cm} + $E_f=3.75$ eV\\ + \includegraphics[width=8cm]{si_self_int_rand_375_0.eps} + \end{minipage} + \begin{minipage}{8.5cm} + $E_f=3.56$ eV\\ + \includegraphics[width=8cm]{si_self_int_rand_356_0.eps} + \end{minipage}\\[1cm] +} {\bf C in Si interstitial results:}\\ +{\small + \begin{minipage}[t]{8.5cm} + \underline{Tetrahedral}\\ + $E_f=2.67$ eV\\ + \includegraphics[width=8cm]{c_in_si_int_tetra_0.eps} + \end{minipage} + \begin{minipage}[t]{8.5cm} + \underline{110 dumbbell}\\ + $E_f=1.76$ eV\\ + \includegraphics[width=8cm]{c_in_si_int_dumbbell_0.eps} + \end{minipage} + \begin{minipage}[t]{8.5cm} + \underline{Hexagonal}\\ + $E_f^{\star}\approx5.6$ eV (unstable!)\\ + \includegraphics[width=8cm]{c_in_si_int_hexa_0.eps} + \end{minipage}\\[1cm] +} +\begin{minipage}{17cm} +\underline{\flq100\frq{} dumbbell configuration} +\begin{itemize} + \item $E_f=0.47$ eV + \item Very often observed + \item Most energetically favorable configuration + \item Experimental evidence [6] +\end{itemize} +\end{minipage} +\begin{minipage}{8cm} +\includegraphics[width=8cm]{c_in_si_int_001db_0.eps} +\end{minipage}\\[1cm] +\begin{center} +\includegraphics[width=26cm]{100-c-si-db_s.eps}\\[0.35cm] +\end{center} +{\tiny + [6] G. D. Watkins and K. L. Brower, Phys. Rev. Lett. 36 (1976) 1329.} \end{pbox} - \begin{pbox} - \section*{Results} - Hier die Resultate! - \end{pbox} + \end{pcolumn} \begin{pcolumn} \begin{pbox} - \section*{Structural/compositional information} - blabla + \section*{High C concentration simulations} + + {\bf Simulation sequence:}\\ + +{\small + \begin{pspicture}(0,0)(30,13) + % nodes + \rput(7.5,11){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{ + \parbox{15cm}{ + \begin{itemize} + \item Initial configuration: $31\times31\times31$ unit cells Si + \item Periodic boundary conditions + \item $T=450\, ^{\circ}\textrm{C}$, $p=0\text{ bar}$ + \item Equilibration of $E_{kin}$ and $E_{pot}$ + \end{itemize} + }}}} + \rput(7.5,5){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{ + \parbox{15cm}{ + Insertion of 6000 carbon atoms at constant\\ + temperature into $V_1$ or $V_2$ or $V_3$: + \begin{itemize} + \item Total simulation volume $V_1$ + \item Volume of minimal 3C-SiC precipitation $V_2$ + \item Volume of necessary amount of Si $V_3$ + \end{itemize} + }}}} + \rput(7.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{ + \parbox{8cm}{ + Cooling down to $20\, ^{\circ}\textrm{C}$ + }}}} + \ncline[]{->}{init}{insert} + \ncline[]{->}{insert}{cool} + \psframe[fillstyle=solid,fillcolor=white](16,2.6)(26,12.6) + \psframe[fillstyle=solid,fillcolor=lightgray](18,4.6)(24,10.6) + \psframe[fillstyle=solid,fillcolor=gray](18.5,5.1)(23.5,10.1) + \rput(9,5.4){\pnode{in1}} + \rput(15,5.4){\pnode{in-1}} + \rput(17,7.2){\pnode{ins1}} + \rput(14,4.2){\pnode{in2}} + \rput(15,4.2){\pnode{in-2}} + \rput(18.25,6.88){\pnode{ins2}} + \rput(12,3.0){\pnode{in3}} + \rput(15,3.0){\pnode{in-3}} + \rput(21,7.6){\pnode{ins3}} + \ncline[linewidth=0.05]{->}{in-1}{ins1} + \ncline[linewidth=0.05]{->}{in-2}{ins2} + \ncline[linewidth=0.05]{->}{in-3}{ins3} + \ncline[linewidth=0.05]{-}{in1}{in-1} + \ncline[linewidth=0.05]{-}{in2}{in-2} + \ncline[linewidth=0.05]{-}{in3}{in-3} + \end{pspicture} +} + {\bf Results:}\\ + Si-C and C-C pair correlation function:\\ + \hspace*{1.3cm} \includegraphics[width=22cm]{pc_si-c_c-c.eps} + \begin{center} + {\tiny + {\bf Dashed vertical lines:} Further calculated C-Si distances + in the \flq100\frq{} C-Si dumbbell interstitial configuration}\\[0.5cm] + \end{center} + Si-Si pair correlation function:\\ + \hspace*{1.3cm} \includegraphics[width=22cm]{pc_si-si.eps}\\ + {\bf Interpretation:} + {\small + \begin{itemize} + \item C-C peak at 0.15 nm similar to next neighbour distance of graphite + or diamond\\ + $\Rightarrow$ Formation of strong C-C bonds + (almost only for high C concentrations) + \item Si-C peak at 0.19 nm similar to next neighbour distance in 3C-SiC + \item C-C peak at 0.31 nm equals C-C distance in 3C-SiC\\ + (due to concatenated, differently oriented + \flq100\frq{} dumbbell interstitials) + \item Si-Si shows non-zero g(r) values around 0.31 nm like in 3C-SiC\\ + and a decrease at regular distances\\ + (no clear peak, + interval of enhanced g(r) corresponds to C-C peak width) + \item Low C concentration (i.e. $V_1$): + The \flq100\frq{} dumbbell configuration + \begin{itemize} + \item is identified to stretch the Si-Si next neighbour distance + to 0.3 nm + \item is identified to contribute to the Si-C peak at 0.19 nm + \item explains further C-Si peaks (dashed vertical lines) + \end{itemize} + $\Rightarrow$ C atoms are first elements arranged at distances + expected for 3C-SiC\\ + $\Rightarrow$ C atoms pull the Si atoms into the right + configuration at a later stage + \item High C concentration (i.e. $V_2$ and $V_3$): + \begin{itemize} + \item High amount of damage introduced into the system + \item Short range order observed but almost no long range order + \end{itemize} + $\Rightarrow$ Start of amorphous SiC-like phase formation\\ + $\Rightarrow$ Higher temperatures required for proper SiC formation + \end{itemize} + } + \end{pbox} + \vspace{-2cm} \begin{pbox} - \section*{Recipe for thick films of ordered lamellae} - blabla + \section*{Conclusion} + \begin{itemize} + \item \flq100\frq{} C-Si dumbbell interstitial configuration is observed + to be the energetically most favorable configuration + \item For low C concentrations C atoms introduced as differently + oriented C-Si dumbbells in c-Si are properly arranged + for 3C-SiC formation + \item For high C concentrations an amorphous SiC-like phase is observed + which suggests higher temperature simulation runs for proper + 3C-SiC formation + \end{itemize} \end{pbox} + \vspace{-2cm} \begin{pbox} - \section*{Conclusions} - Hier die Zusammenfassung + One of us (F. Z.) wants to acknowledge financial support by the\\ + {\bf Bayerische Forschungsstiftung} (DPA-61/05). \end{pbox} \end{pcolumn}