X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=posic%2Fpublications%2Fdefect_combos.tex;h=2238374281da3f6d5c4f288177575bc6ebc28b23;hp=307e18af148898c6388cec525e749898a90e1ea3;hb=df1216b4231b3c8aac63e813549d5beb88119aeb;hpb=d7bf110b5628464671a09b2c971cbb85a90a3cd1 diff --git a/posic/publications/defect_combos.tex b/posic/publications/defect_combos.tex index 307e18a..2238374 100644 --- a/posic/publications/defect_combos.tex +++ b/posic/publications/defect_combos.tex @@ -16,7 +16,6 @@ \begin{document} -%\title{Mobility of Carbon in Silicon -- a first-principles study} \title{First-principles study of defects in carbon implanted silicon} \author{F. Zirkelbach} \author{B. Stritzker} @@ -78,14 +77,17 @@ The first-principles DFT calculations were performed with the plane-wave based V The Kohn-Sham equations were solved using the generalized-gradient exchange-correlation (XC) functional approximation proposed by Perdew and Wang\cite{perdew86,perdew92}. The electron-ion interaction was described by norm-conserving ultra-soft pseudopotentials\cite{hamann79} as implemented in VASP\cite{vanderbilt90}. Throughout this work an energy cut-off of \unit[300]{eV} was used to expand the wave functions into the plane-wave basis. -Sampling of the Brillouin zone was restricted to the $\Gamma$-point. +To reduce the computational effort sampling of the Brillouin zone was restricted to the $\Gamma$-point, which was proven to yield reliable results\cite{dal_pino93}. The defect structures and the migration paths were modelled in cubic supercells with a side length of \unit[1.6]{nm} containing $216$ Si atoms. The ions and cell shape were allowed to change in order to realize a constant pressure simulation. +The observed changes in volume were less than \unit[0.2]{\%} of the volume indicating a rather low dependence of the results on the ensemble choice. Ionic relaxation was realized by the conjugate gradient algorithm. Spin polarization has been fully accounted for. Migration and recombination pathways have been investigated utilizing the constraint conjugate gradient relaxation technique (CRT)\cite{kaukonen98}. +While not guaranteed to find the true minimum energy path the method turns out to identify reasonable pathways for the investigated structures. The defect formation energy $E-N_{\text{Si}}\mu_{\text{Si}}-N_{\text{C}}\mu_{\text{C}}$ is defined by choosing SiC as a particle reservoir for the C impurity, i.e. the chemical potentials are determined by the cohesive energies of a perfect Si and SiC supercell after ionic relaxation. +In the same way defect formation energies are determined in the articles used for comparison. The binding energy of a defect pair is given by the difference of the formation energy of the complex and the sum of the two separated defect configurations. Accordingly, energetically favorable configurations show binding energies below zero while non-interacting isolated defects result in a binding energy of zero. @@ -594,8 +596,284 @@ Prof. Kai Nordlund is greatly acknowledged for useful comments on the present ma % --------------------------------- references ------------------- -\bibliography{../../bibdb/bibdb}{} -\bibliographystyle{h-physrev3} - +%\bibliography{../../bibdb/bibdb}{} +%\bibliographystyle{h-physrev3} + +\begin{thebibliography}{10} + +\bibitem{edgar92} +J.~H. Edgar, +\newblock J. Mater. Res. {\bf 7}, 235 (1992). + +\bibitem{morkoc94} +H.~Morko\c{c}, S.~Strite, G.~B. Gao, M.~E. Lin, B.~Sverdlov, and M.~Burns, +\newblock J. Appl. Phys. {\bf 76}, 1363 (1994). + +\bibitem{wesch96} +W.~Wesch, +\newblock Nucl. Instrum. Methods Phys. Res. B {\bf 116}, 305 (1996), +\newblock Radiation Effects in Insulators. + +\bibitem{capano97} +M.~A. Capano and R.~J. Trew, +\newblock MRS Bull. {\bf 22}, 19 (1997). + +\bibitem{park98} +Y.~S. Park, +\newblock {\em Si{C} Materials and Devices} (Academic Press, San Diego, 1998). + +\bibitem{borders71} +J.~A. Borders, S.~T. Picraux, and W.~Beezhold, +\newblock Appl. Phys. Lett. {\bf 18}, 509 (1971). + +\bibitem{lindner99} +J.~K.~N. Lindner and B.~Stritzker, +\newblock Nucl. Instrum. Methods Phys. Res. B {\bf 147}, 249 (1999). + +\bibitem{lindner01} +J.~K.~N. Lindner, +\newblock Nucl. Instrum. Methods Phys. Res. B {\bf 178}, 44 (2001). + +\bibitem{lindner02} +J.~K.~N. Lindner, +\newblock Appl. Phys. A {\bf 77}, 27 (2003). + +\bibitem{werner96} +P.~Werner, R.~K{\"{o}}gler, W.~Skorupa, and D.~Eichler, +\newblock {TEM} investigation of {C}-si defects in carbon implanted silicon, +\newblock in {\em Ion Implantation Technology. Proceedings of the 11th + International Conference on}, pp. 675--678, 1996. + +\bibitem{werner97} +P.~Werner, S.~Eichler, G.~Mariani, R.~K{\"{o}}gler, and W.~Skorupa, +\newblock Appl. Phys. Lett. {\bf 70}, 252 (1997). + +\bibitem{eichhorn99} +F.~Eichhorn, N.~Schell, W.~Matz, and R.~K{\"{o}}gler, +\newblock J. Appl. Phys. {\bf 86}, 4184 (1999). + +\bibitem{lindner99_2} +J.~K.~N. Lindner and B.~Stritzker, +\newblock Nucl. Instrum. Methods Phys. Res. B {\bf 148}, 528 (1999). + +\bibitem{koegler03} +R.~K{\"{o}}gler, F.~Eichhorn, J.~R. Kaschny, A.~M{\"{u}}cklich, H.~Reuther, + W.~Skorupa, C.~Serre, and A.~Perez-Rodriguez, +\newblock Appl. Phys. A: Mater. Sci. Process. {\bf 76}, 827 (2003). + +\bibitem{strane94} +J.~W. Strane, H.~J. Stein, S.~R. Lee, S.~T. Picraux, J.~K. Watanabe, and J.~W. + Mayer, +\newblock J. Appl. Phys. {\bf 76}, 3656 (1994). + +\bibitem{guedj98} +C.~Guedj, M.~W. Dashiell, L.~Kulik, J.~Kolodzey, and A.~Hairie, +\newblock J. Appl. Phys. {\bf 84}, 4631 (1998). + +\bibitem{nejim95} +A.~Nejim, P.~L.~F. Hemment, and J.~Stoemenos, +\newblock Appl. Phys. Lett. {\bf 66}, 2646 (1995). + +\bibitem{bar-yam84} +Y.~Bar-Yam and J.~D. Joannopoulos, +\newblock Phys. Rev. Lett. {\bf 52}, 1129 (1984). + +\bibitem{bar-yam84_2} +Y.~Bar-Yam and J.~D. Joannopoulos, +\newblock Phys. Rev. B {\bf 30}, 1844 (1984). + +\bibitem{car84} +R.~Car, P.~J. Kelly, A.~Oshiyama, and S.~T. Pantelides, +\newblock Phys. Rev. Lett. {\bf 52}, 1814 (1984). + +\bibitem{batra87} +I.~P. Batra, F.~F. Abraham, and S.~Ciraci, +\newblock Phys. Rev. B {\bf 35}, 9552 (1987). + +\bibitem{bloechl93} +P.~E. Bl{\"o}chl, E.~Smargiassi, R.~Car, D.~B. Laks, W.~Andreoni, and S.~T. + Pantelides, +\newblock Phys. Rev. Lett. {\bf 70}, 2435 (1993). + +\bibitem{tang97} +M.~Tang, L.~Colombo, J.~Zhu, and T.~Diaz~de~la Rubia, +\newblock Phys. Rev. B {\bf 55}, 14279 (1997). + +\bibitem{leung99} +W.-K. Leung, R.~J. Needs, G.~Rajagopal, S.~Itoh, and S.~Ihara, +\newblock Phys. Rev. Lett. {\bf 83}, 2351 (1999). + +\bibitem{colombo02} +L.~Colombo, +\newblock Annu. Rev. Mater. Res. {\bf 32}, 271 (2002). + +\bibitem{goedecker02} +S.~Goedecker, T.~Deutsch, and L.~Billard, +\newblock Phys. Rev. Lett. {\bf 88}, 235501 (2002). + +\bibitem{al-mushadani03} +O.~K. Al-Mushadani and R.~J. Needs, +\newblock Phys. Rev. B {\bf 68}, 235205 (2003). + +\bibitem{hobler05} +G.~Hobler and G.~Kresse, +\newblock Mater. Sci. Eng., B {\bf 124-125}, 368 (2005), +\newblock EMRS 2005, Symposium D - Materials Science and Device Issues for + Future Technologies. + +\bibitem{posselt08} +M.~Posselt, F.~Gao, and H.~Bracht, +\newblock Phys. Rev. B {\bf 78}, 035208 (2008). + +\bibitem{ma10} +S.~Ma and S.~Wang, +\newblock Phys. Rev. B {\bf 81}, 193203 (2010). + +\bibitem{sahli05} +B.~Sahli and W.~Fichtner, +\newblock Phys. Rev. B {\bf 72}, 245210 (2005). + +\bibitem{mazzarolo01} +M.~Mazzarolo, L.~Colombo, G.~Lulli, and E.~Albertazzi, +\newblock Phys. Rev. B {\bf 63}, 195207 (2001). + +\bibitem{holmstroem08} +E.~Holmstr{\"o}m, A.~Kuronen, and K.~Nordlund, +\newblock Phys. Rev. B {\bf 78}, 045202 (2008). + +\bibitem{tersoff90} +J.~Tersoff, +\newblock Phys. Rev. Lett. {\bf 64}, 1757 (1990). + +\bibitem{dal_pino93} +A.~{Dal Pino}, A.~M. Rappe, and J.~D. Joannopoulos, +\newblock Phys. Rev. B {\bf 47}, 12554 (1993). + +\bibitem{capaz94} +R.~B. Capaz, A.~{Dal Pino}, and J.~D. Joannopoulos, +\newblock Phys. Rev. B {\bf 50}, 7439 (1994). + +\bibitem{burnard93} +M.~J. Burnard and G.~G. DeLeo, +\newblock Phys. Rev. B {\bf 47}, 10217 (1993). + +\bibitem{leary97} +P.~Leary, R.~Jones, S.~{\"O}berg, and V.~J.~B. Torres, +\newblock Phys. Rev. B {\bf 55}, 2188 (1997). + +\bibitem{capaz98} +R.~B. Capaz, A.~{Dal Pino}, and J.~D. Joannopoulos, +\newblock Phys. Rev. B {\bf 58}, 9845 (1998). + +\bibitem{zhu98} +J.~Zhu, +\newblock Comput. Mater. Sci. {\bf 12}, 309 (1998). + +\bibitem{mattoni2002} +A.~Mattoni, F.~Bernardini, and L.~Colombo, +\newblock Phys. Rev. B {\bf 66}, 195214 (2002). + +\bibitem{park02} +S.~Y. Park, J.~D'Arcy-Gall, D.~Gall, J.~A. N.~T. Soares, Y.-W. Kim, H.~Kim, + P.~Desjardins, J.~E. Greene, and S.~G. Bishop, +\newblock J. Appl. Phys. {\bf 91}, 5716 (2002). + +\bibitem{jones04} +R.~Jones, B.~J. Coomer, and P.~R. Briddon, +\newblock J. Phys.: Condens. Matter {\bf 16}, S2643 (2004). + +\bibitem{chirita97} +V.~Chirita, L.~Hultman, and L.~R. Wallenberg, +\newblock Thin Solid Films {\bf 294}, 47 (1997). + +\bibitem{kitabatake93} +M.~Kitabatake, M.~Deguchi, and T.~Hirao, +\newblock J. Appl. Phys. {\bf 74}, 4438 (1993). + +\bibitem{cicero02} +G.~Cicero, L.~Pizzagalli, and A.~Catellani, +\newblock Phys. Rev. Lett. {\bf 89}, 156101 (2002). + +\bibitem{pizzagalli03} +L.~Pizzagalli, G.~Cicero, and A.~Catellani, +\newblock Phys. Rev. B {\bf 68}, 195302 (2003). + +\bibitem{bockstedte03} +M.~Bockstedte, A.~Mattausch, and O.~Pankratov, +\newblock Phys. Rev. B {\bf 68}, 205201 (2003). + +\bibitem{rauls03a} +E.~Rauls, T.~Frauenheim, A.~Gali, and P.~De\'ak, +\newblock Phys. Rev. B {\bf 68}, 155208 (2003). + +\bibitem{gao04} +F.~Gao, W.~J. Weber, M.~Posselt, and V.~Belko, +\newblock Phys. Rev. B {\bf 69}, 245205 (2004). + +\bibitem{posselt06} +M.~Posselt, F.~Gao, and W.~J. Weber, +\newblock Phys. Rev. B {\bf 73}, 125206 (2006). + +\bibitem{gao07} +F.~Gao, J.~Du, E.~J. Bylaska, M.~Posselt, and W.~J. Weber, +\newblock Appl. Phys. Lett. {\bf 90}, 221915 (2007). + +\bibitem{kresse96} +G.~Kresse and J.~Furthm{\"{u}}ller, +\newblock Comput. Mater. Sci. {\bf 6}, 15 (1996). + +\bibitem{perdew86} +J.~P. Perdew and Y.~Wang, +\newblock Phys. Rev. B {\bf 33}, 8800 (1986). + +\bibitem{perdew92} +J.~P. Perdew, J.~A. Chevary, S.~H. Vosko, K.~A. Jackson, M.~R. Pederson, D.~J. + Singh, and C.~Fiolhais, +\newblock Phys. Rev. B {\bf 46}, 6671 (1992). + +\bibitem{hamann79} +D.~R. Hamann, M.~Schl{\"u}ter, and C.~Chiang, +\newblock Phys. Rev. Lett. {\bf 43}, 1494 (1979). + +\bibitem{vanderbilt90} +D.~Vanderbilt, +\newblock Phys. Rev. B {\bf 41}, 7892 (1990). + +\bibitem{kaukonen98} +M.~Kaukonen, P.~K. Sitch, G.~Jungnickel, R.~M. Nieminen, S.~P{\"o}ykk{\"o}, + D.~Porezag, and T.~Frauenheim, +\newblock Phys. Rev. B {\bf 57}, 9965 (1998). + +\bibitem{watkins76} +G.~D. Watkins and K.~L. Brower, +\newblock Phys. Rev. Lett. {\bf 36}, 1329 (1976). + +\bibitem{song90} +L.~W. Song and G.~D. Watkins, +\newblock Phys. Rev. B {\bf 42}, 5759 (1990). + +\bibitem{lindner06} +J.~K.~N. Lindner, M.~H{\"a}berlen, G.~Thorwarth, and B.~Stritzker, +\newblock Mater. Sci. Eng., C {\bf 26}, 857 (2006). + +\bibitem{tipping87} +A.~K. Tipping and R.~C. Newman, +\newblock Semicond. Sci. Technol. {\bf 2}, 315 (1987). + +\bibitem{zirkelbach10a} +F.~Zirkelbach, B.~Stritzker, K.~Nordlund, J.~K.~N. Lindner, W.~G. Schmidt, and + E.~Rauls, +\newblock Phys. Rev. B {\bf 82}, 094110 (2010). + +\bibitem{song90_2} +L.~W. Song, X.~D. Zhan, B.~W. Benson, and G.~D. Watkins, +\newblock Phys. Rev. B {\bf 42}, 5765 (1990). + +\bibitem{liu02} +C.-L. Liu, W.~Windl, L.~Borucki, S.~Lu, and X.-Y. Liu, +\newblock Appl. Phys. Lett. {\bf 80}, 52 (2002). + +\end{thebibliography} + \end{document}