X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=posic%2Ftalks%2Fdefense.tex;h=b7150bd691a7f24cb060041c8ab004ad475e93ce;hp=a8062e86cd38703c420e4980a4e21c592e9f22c8;hb=6c440bc5f807b6d785c47c2154fa91a82cb177a3;hpb=3f65cf44692d94497ff4a2ac366cb91b97ac3012 diff --git a/posic/talks/defense.tex b/posic/talks/defense.tex index a8062e8..b7150bd 100644 --- a/posic/talks/defense.tex +++ b/posic/talks/defense.tex @@ -142,23 +142,26 @@ E\\ \vspace{16pt} - {\LARGE\bf - Atomistic simulation study\\[0.2cm] - on silicon carbide precipitation\\[0.2cm] - in silicon + {\Large\bf + \hrule + \vspace{5pt} + Atomistic simulation study on silicon carbide\\[0.2cm] + precipitation in silicon\\ + \vspace{10pt} + \hrule } - \vspace{48pt} + \vspace{60pt} \textsc{Frank Zirkelbach} - \vspace{48pt} + \vspace{60pt} Defense of doctor's thesis \vspace{08pt} - Augsburg, 10. Jan. 2012 + Augsburg, 10.01.2012 \end{center} \end{slide} @@ -166,6 +169,9 @@ E\\ % no vertical centering \centerslidesfalse +% skip for preparation +\ifnum1=0 + % intro % motivation / properties / applications of silicon carbide @@ -242,10 +248,13 @@ E\\ \begin{slide} +\headphd {\large\bf - Polytypes of SiC\\[0.4cm] + Polytypes of SiC\\[0.6cm] } +\vspace{0.6cm} + \includegraphics[width=3.8cm]{cubic_hex.eps}\\ \begin{minipage}{1.9cm} {\tiny cubic (twist)} @@ -277,13 +286,13 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\ \end{tabular} \begin{pspicture}(0,0)(0,0) -\psellipse[linecolor=green](5.7,2.10)(0.4,0.5) +\psellipse[linecolor=green](5.7,2.05)(0.4,0.50) \end{pspicture} \begin{pspicture}(0,0)(0,0) -\psellipse[linecolor=green](5.6,0.92)(0.4,0.2) +\psellipse[linecolor=green](5.6,0.89)(0.4,0.20) \end{pspicture} \begin{pspicture}(0,0)(0,0) -\psellipse[linecolor=red](10.45,0.45)(0.4,0.2) +\psellipse[linecolor=red](10.45,0.42)(0.4,0.20) \end{pspicture} \end{slide} @@ -322,12 +331,24 @@ SiC thin films by MBE \& CVD \includegraphics[width=2.0cm]{cree.eps} \end{picture} -\vspace{-0.2cm} +\vspace{-0.5cm} + +\begin{center} +\color{red} +\framebox{ +{\footnotesize\color{black} + Mismatch in \underline{thermal expansion coeefficient} + and \underline{lattice parameter} w.r.t. substrate +} +} +\end{center} + +\vspace{0.1cm} -Alternative approach: +{\bf Alternative approach}\\ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) -\vspace{0.2cm} +\vspace{0.1cm} \scriptsize @@ -350,36 +371,15 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) \end{minipage} } \begin{minipage}{5.5cm} - \includegraphics[width=5.8cm]{ibs_3c-sic.eps}\\[-0.2cm] - \begin{center} - {\tiny - XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0) - } - \end{center} -\end{minipage} - -\end{slide} - -% contents - -\begin{slide} - -\headphd -{\large\bf - Outline +\begin{center} +{\footnotesize +No surface bending effects\\ +High areal homogenity\\[0.1cm] +$\Downarrow$\\[0.1cm] +Synthesis of large area SiC films possible } - - \begin{itemize} - \item Supposed precipitation mechanism of SiC in Si - \item Utilized simulation techniques - \begin{itemize} - \item Molecular dynamics (MD) simulations - \item Density functional theory (DFT) calculations - \end{itemize} - \item C and Si self-interstitial point defects in silicon - \item Silicon carbide precipitation simulations - \item Summary / Conclusion / Outlook - \end{itemize} +\end{center} +\end{minipage} \end{slide} @@ -387,7 +387,7 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) \headphd {\large\bf - Formation of epitaxial single crystalline 3C-SiC + IBS of epitaxial single crystalline 3C-SiC } \footnotesize @@ -410,8 +410,13 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) \end{itemize} \end{center} -\begin{minipage}{7cm} -\includegraphics[width=7cm]{ibs_3c-sic.eps} +\begin{minipage}{6.9cm} +\includegraphics[width=7cm]{ibs_3c-sic.eps}\\[-0.4cm] +\begin{center} +{\tiny + XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0) +} +\end{center} \end{minipage} \begin{minipage}{5cm} \begin{pspicture}(0,0)(0,0) @@ -435,8 +440,8 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) \end{itemize} \end{minipage} }} -\rput(-6.8,5.4){\pnode{h0}} -\rput(-3.0,5.4){\pnode{h1}} +\rput(-6.8,5.5){\pnode{h0}} +\rput(-3.0,5.5){\pnode{h1}} \ncline[linecolor=blue]{-}{h0}{h1} \ncline[linecolor=blue]{->}{h1}{box} \end{pspicture} @@ -444,6 +449,8 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) \end{slide} +% contents + \begin{slide} \headphd @@ -495,7 +502,7 @@ $\rho^*_{\text{Si}}=\unit[97]{\%}$ \begin{minipage}{4.0cm} \begin{center} C-Si dimers (dumbbells)\\[-0.1cm] - on Si interstitial sites + on Si lattice sites \end{center} \end{minipage} \hspace{0.1cm} @@ -705,6 +712,33 @@ r = \unit[2--4]{nm} \begin{slide} +\headphd +{\large\bf + Outline +} + + \begin{itemize} + {\color{gray} + \item Introduction / Motivation + \item Assumed SiC precipitation mechanisms / Controversy + } + \item Utilized simulation techniques + \begin{itemize} + \item Molecular dynamics (MD) simulations + \item Density functional theory (DFT) calculations + \end{itemize} + \item Simulation results + \begin{itemize} + \item C and Si self-interstitial point defects in silicon + \item Silicon carbide precipitation simulations + \end{itemize} + \item Summary / Conclusion + \end{itemize} + +\end{slide} + +\begin{slide} + \headphd {\large\bf Utilized computational methods @@ -753,7 +787,7 @@ NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\ \hrule \begin{itemize} \item Code: \textsc{vasp} -\item Plane wave basis set +\item Plane wave basis set | $E_{\text{cut}}=\unit[300]{eV}$ %$\displaystyle %\Phi_i=\sum_{|G+k|