X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=posic%2Ftalks%2Fdefense.tex;h=b7150bd691a7f24cb060041c8ab004ad475e93ce;hp=c6cb981737d60be6dd44500d9fc438cc7cf10fef;hb=6c440bc5f807b6d785c47c2154fa91a82cb177a3;hpb=a08cd67251d6433ee23653e567601260436c923a diff --git a/posic/talks/defense.tex b/posic/talks/defense.tex index c6cb981..b7150bd 100644 --- a/posic/talks/defense.tex +++ b/posic/talks/defense.tex @@ -248,6 +248,7 @@ E\\ \begin{slide} +\headphd {\large\bf Polytypes of SiC\\[0.6cm] } @@ -285,19 +286,17 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\ \end{tabular} \begin{pspicture}(0,0)(0,0) -\psellipse[linecolor=green](5.7,2.10)(0.4,0.5) +\psellipse[linecolor=green](5.7,2.05)(0.4,0.50) \end{pspicture} \begin{pspicture}(0,0)(0,0) -\psellipse[linecolor=green](5.6,0.92)(0.4,0.2) +\psellipse[linecolor=green](5.6,0.89)(0.4,0.20) \end{pspicture} \begin{pspicture}(0,0)(0,0) -\psellipse[linecolor=red](10.45,0.45)(0.4,0.2) +\psellipse[linecolor=red](10.45,0.42)(0.4,0.20) \end{pspicture} \end{slide} -\fi - % fabrication \begin{slide} @@ -331,10 +330,20 @@ SiC thin films by MBE \& CVD \begin{picture}(0,0)(-310,-20) \includegraphics[width=2.0cm]{cree.eps} \end{picture} -{\color{red}\scriptsize Mismatch in thermal expansion coeefficient - and lattice paramater} -\vspace{-0.2cm} +\vspace{-0.5cm} + +\begin{center} +\color{red} +\framebox{ +{\footnotesize\color{black} + Mismatch in \underline{thermal expansion coeefficient} + and \underline{lattice parameter} w.r.t. substrate +} +} +\end{center} + +\vspace{0.1cm} {\bf Alternative approach}\\ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) @@ -363,9 +372,11 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) } \begin{minipage}{5.5cm} \begin{center} -{\small +{\footnotesize No surface bending effects\\ -$\Rightarrow$ Synthesis of large area SiC films possible +High areal homogenity\\[0.1cm] +$\Downarrow$\\[0.1cm] +Synthesis of large area SiC films possible } \end{center} \end{minipage} @@ -438,35 +449,10 @@ $\Rightarrow$ Synthesis of large area SiC films possible \end{slide} -\end{document} -% temp -\ifnum1=0 - % contents \begin{slide} -\headphd -{\large\bf - Outline -} - - \begin{itemize} - \item Supposed precipitation mechanism of SiC in Si - \item Utilized simulation techniques - \begin{itemize} - \item Molecular dynamics (MD) simulations - \item Density functional theory (DFT) calculations - \end{itemize} - \item C and Si self-interstitial point defects in silicon - \item Silicon carbide precipitation simulations - \item Summary / Conclusion - \end{itemize} - -\end{slide} - -\begin{slide} - \headphd {\large\bf Supposed precipitation mechanism of SiC in Si @@ -516,7 +502,7 @@ $\rho^*_{\text{Si}}=\unit[97]{\%}$ \begin{minipage}{4.0cm} \begin{center} C-Si dimers (dumbbells)\\[-0.1cm] - on Si interstitial sites + on Si lattice sites \end{center} \end{minipage} \hspace{0.1cm} @@ -726,6 +712,33 @@ r = \unit[2--4]{nm} \begin{slide} +\headphd +{\large\bf + Outline +} + + \begin{itemize} + {\color{gray} + \item Introduction / Motivation + \item Assumed SiC precipitation mechanisms / Controversy + } + \item Utilized simulation techniques + \begin{itemize} + \item Molecular dynamics (MD) simulations + \item Density functional theory (DFT) calculations + \end{itemize} + \item Simulation results + \begin{itemize} + \item C and Si self-interstitial point defects in silicon + \item Silicon carbide precipitation simulations + \end{itemize} + \item Summary / Conclusion + \end{itemize} + +\end{slide} + +\begin{slide} + \headphd {\large\bf Utilized computational methods @@ -774,7 +787,7 @@ NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\ \hrule \begin{itemize} \item Code: \textsc{vasp} -\item Plane wave basis set +\item Plane wave basis set | $E_{\text{cut}}=\unit[300]{eV}$ %$\displaystyle %\Phi_i=\sum_{|G+k|