X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=posic%2Ftalks%2Fdpg_2008.tex;h=483f760d62bb05491b787a15b3cff0c3e487fc77;hp=5349eac542dd8b8afd6ffa09fdb8e8ddd6cb642a;hb=f14aef6d5395a7e3ec537b6025aa36a1490464d9;hpb=49f1ea0ef08a54fb99739f04a420e689daef7c4f diff --git a/posic/talks/dpg_2008.tex b/posic/talks/dpg_2008.tex index 5349eac..483f760 100644 --- a/posic/talks/dpg_2008.tex +++ b/posic/talks/dpg_2008.tex @@ -6,6 +6,7 @@ \usepackage[latin1]{inputenc} \usepackage[T1]{fontenc} \usepackage{amsmath} +\usepackage{latexsym} \usepackage{ae} \usepackage{calc} % Simple computations with LaTeX variables @@ -16,9 +17,17 @@ \usepackage{fancyvrb} % Fancy verbatim environments \usepackage{pstricks} % PSTricks with the standard color package +\usepackage{pstricks} +\usepackage{pst-node} + +%\usepackage{epic} +%\usepackage{eepic} + \usepackage{graphicx} \graphicspath{{../img/}} +\usepackage[setpagesize=false]{hyperref} + \usepackage{semcolor} \usepackage{semlayer} % Seminar overlays \usepackage{slidesec} % Seminar sections and list of slides @@ -33,7 +42,9 @@ \begin{document} \extraslideheight{10in} -\slideframe{plain} +\slideframe{none} + +\pagestyle{empty} % specify width and height \slidewidth 27.7cm @@ -41,7 +52,7 @@ % shift it into visual area properly \def\slideleftmargin{3.3cm} -\def\slidetopmargin{0.0cm} +\def\slidetopmargin{0.6cm} \newcommand{\ham}{\mathcal{H}} \newcommand{\pot}{\mathcal{V}} @@ -111,41 +122,54 @@ % contents +% no contents for such a short talk! + +% start of contents + \begin{slide} - \begin{center} - {\bf - Molecular dynamics simulation study\\ - of the silicon carbide precipitation process + {\large\bf + Motivation / Introduction } - \end{center} \vspace{16pt} - {\large\bf - Outline - } + Reasons for understanding the SiC precipitation process: + + \begin{itemize} + \item 3C-SiC wide band gap semiconductor formation + \item Strained Si (no precipitation wanted!) + \end{itemize} \vspace{16pt} + Si / 3C-SiC facts: + + \begin{minipage}{8cm} \begin{itemize} - \item Motivation / Introduction - \item Molecular dynamics simulation details + \item Unit cell: \begin{itemize} - \item Integrator, potential, ensemble control - \item Simulation sequence + \item {\color{orange}fcc} $+$ + \item {\color{gray}fcc shifted $1/4$ of volume diagonal} \end{itemize} - \item Results gained by simulation - \begin{itemize} - \item Interstitials in silicon - \item SiC-precipitation experiments - \end{itemize} - \item Conclusion / Outlook + \item Lattice constants: + \[ + 4a_{Si}\approx5a_{SiC} + \] + \item Silicon density: + \[ + \frac{n_{SiC}}{n_{Si}}=97,66\,\% + \] \end{itemize} -\end{slide} + \end{minipage} + \hspace{8pt} + \begin{minipage}{4cm} + \includegraphics[width=4cm]{sic_unit_cell.eps} + \end{minipage} -% start of contents +\end{slide} + \small \begin{slide} {\large\bf @@ -155,7 +179,7 @@ \small \vspace{6pt} - Supposed mechanism of the conversion of heavily carbon doped Si into SiC: + Supposed conversion mechanism of heavily carbon doped Si into SiC: \vspace{8pt} @@ -185,16 +209,13 @@ Precipitation of 3C-SiC + Creation of interstitials\\ \end{minipage} - \begin{center} - \[ - \textrm{Silicon density: } \quad - 5a_{SiC}=4a_{Si} \quad \Rightarrow \quad - \frac{n_{SiC}}{n_{Si}}=\frac{\frac{4}{a_{SiC}^3}}{\frac{8}{a_{Si}^3}}= - \frac{5^3}{2\cdot4^3}={\color{cyan}97,66}\,\% - \] - \end{center} + \vspace{12pt} - Experimentally observed minimal diameter of precipitation: 4 - 5 nm + Experimentally observed: + \begin{itemize} + \item Minimal diameter of precipitation: 4 - 5 nm + \item Equal orientation of Si and SiC (hkl)-planes + \end{itemize} \end{slide} @@ -204,31 +225,37 @@ Simulation details } + \vspace{12pt} + MD basics: \begin{itemize} \item Microscopic description of N particle system \item Analytical interaction potential \item Hamilton's equations of motion as propagation rule\\ - in 6N-dimemnsional phase space + in 6N-dimensional phase space \item Observables obtained by time average \end{itemize} - \vspace{4pt} + \vspace{12pt} Application details: \begin{itemize} - \item Integrator: velocity verlet, timestep: $1\, fs$ - \item Ensemble control: NVT, Berendsen thermostat, $\tau=100.0$ + \item Integrator: Velocity Verlet, timestep: $1\, fs$ + \item Ensemble: NVT, Berendsen thermostat, $\tau=100.0$ \item Potential: Tersoff-like bond order potential\\ \[ E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] \] \begin{center} - {\scriptsize P. Erhart und K. Albe. Phys. Rev. B 71 (2005) 035211} + {\scriptsize P. Erhart and K. Albe. Phys. Rev. B 71 (2005) 035211} \end{center} \end{itemize} + \begin{picture}(0,0)(-240,-70) + \includegraphics[width=5cm]{tersoff_angle.eps} + \end{picture} + \end{slide} \begin{slide} @@ -237,127 +264,84 @@ Simulation details } - \vspace{20pt} - - Interstitial experiments: + \vspace{8pt} - \vspace{12pt} + Interstitial simulations: - \begin{itemize} - \item Initial configuration: $9\times9\times9$ unit cells Si - \item Periodic boundary conditions - \item $T=0 \, K$ - \item Insertion of Si / C atom at - \begin{itemize} - \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral} - \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal} - \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$ - $\rightarrow$ {\color{yellow}110 dumbbell} - \item random positions (critical distance check) - \end{itemize} - \item Relaxation time: $2\, ps$ - \item Optional heating-up - \end{itemize} + \vspace{8pt} - \begin{picture}(0,0)(-210,-85) + \begin{pspicture}(0,0)(7,8) + \rput(3.5,7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{ + \parbox{7cm}{ + \begin{itemize} + \item Initial configuration: $9\times9\times9$ unit cells Si + \item Periodic boundary conditions + \item $T=0 \, K$ + \end{itemize} + }}}} +\rput(3.5,3.5){\rnode{insert}{\psframebox{ + \parbox{7cm}{ + Insertion of C / Si atom: + \begin{itemize} + \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral} + \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal} + \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$\\ + $\rightarrow$ {\color{magenta}110 dumbbell} + \item random positions (critical distance check) + \end{itemize} + }}}} + \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{ + \parbox{3.5cm}{ + Relaxation time: $2\, ps$ + }}}} + \ncline[]{->}{init}{insert} + \ncline[]{->}{insert}{cool} + \end{pspicture} + + \begin{picture}(0,0)(-210,-45) \includegraphics[width=6cm]{unit_cell.eps} \end{picture} \end{slide} -\begin{slide} - - {\large\bf - Simulation details - } - - \small - - SiC precipitation experiments: - \begin{itemize} - \item Initial configuration: $31\times31\times31$ unit cells Si - \item Periodic boundary conditions - \item $T=450\, ^{\circ}C$ - \item Steady state time: $600\, fs$ - \item C insertion steps: - \begin{itemize} - \item If $T=450\pm 1\, ^{\circ}C$:\\ - Insertion of 10 atoms at random positions within $V_{ins}$ - \item Otherwise: Annealing for another $100\, fs$ - \end{itemize} - \item Annealing: ($T_a: 450\rightarrow 20 \, ^{\circ}C$) - \begin{itemize} - \item If $T=T_a$: Decrease $T_a$ by $1\, ^{\circ}C$ - \item Otherwise: Annealing for another $50\, fs$ - \end{itemize} - \end{itemize} - - Szenarios: - \begin{enumerate} - \item $V_{ins}$: total simulation volume $V$ - \item $V_{ins}$: $12\times12\times12$ SiC unit cells - ($\sim$ volume of minimal SiC precipitation) - \item $V_{ins}$: $9\times9\times9$ SiC unit cells - ($\sim$ volume of necessary amount of Si) - \end{enumerate} - -\end{slide} - \begin{slide} {\large\bf Results - } - - Si self-interstitial experiments: - - {\footnotesize - {\bf Note:} - \begin{itemize} - \item $r_{cutoff}^{Si-Si}=2.96>\frac{5.43}{2}$ - \item Bond length near $r_{cutoff} \Rightarrow$ small bond strength - \end{itemize} - } - - \vspace{8pt} + } - Si self-interstitial runs \small - \begin{minipage}[t]{4.0cm} - \underline{Tetrahedral} - \begin{itemize} - \item $E_F=3.41\, eV$ - \item essentialy tetrahedral\\ - bonds - \end{itemize} + \begin{minipage}[t]{4.3cm} + \underline{Tetrahedral}\\ + $E_f=3.41\, eV$\\ + \includegraphics[width=3.8cm]{si_self_int_tetra_0.eps} \end{minipage} - \hspace{0.3cm} - \begin{minipage}[t]{4.0cm} - \underline{110 dumbbell} - \begin{itemize} - \item $E_F=4.39\, eV$ - \item essentially 4 bonds - \end{itemize} + \begin{minipage}[t]{4.3cm} + \underline{110 dumbbell}\\ + $E_f=4.39\, eV$\\ + \includegraphics[width=3.8cm]{si_self_int_dumbbell_0.eps} \end{minipage} - \hspace{0.3cm} - \begin{minipage}[t]{4.0cm} - \underline{Hexagonal} - \begin{itemize} - \item $E_F^{\star}=4.48\, eV$ - \item unstable! - \end{itemize} + \begin{minipage}[t]{4.3cm} + \underline{Hexagonal} \hspace{4pt} + \href{../video/si_self_int_hexa.avi}{$\rhd$}\\ + $E_f^{\star}\approx4.48\, eV$ (unstable!)\\ + \includegraphics[width=3.8cm]{si_self_int_hexa_0.eps} \end{minipage} - \vspace{8pt} + \underline{Random insertion} \begin{minipage}{4.3cm} - \includegraphics[width=3.8cm]{si_self_int_tetra_0.eps} + $E_f=3.97\, eV$\\ + \includegraphics[width=3.8cm]{si_self_int_rand_397_0.eps} \end{minipage} \begin{minipage}{4.3cm} - \includegraphics[width=3.8cm]{si_self_int_dumbbell_0.eps} + $E_f=3.75\, eV$\\ + \includegraphics[width=3.8cm]{si_self_int_rand_375_0.eps} \end{minipage} \begin{minipage}{4.3cm} - \includegraphics[width=3.8cm]{si_self_int_hexa_0.eps} + $E_f=3.56\, eV$\\ + \includegraphics[width=3.8cm]{si_self_int_rand_356_0.eps} \end{minipage} \end{slide} @@ -366,100 +350,170 @@ {\large\bf Results - } - - \vspace{8pt} + } - Carbon interstitial runs - Si self-interstitial \underline{random insertion} experiments: + \small - \vspace{8pt} + \begin{minipage}[t]{4.3cm} + \underline{Tetrahedral}\\ + $E_f=2.67\, eV$\\ + \includegraphics[width=3.8cm]{c_in_si_int_tetra_0.eps} + \end{minipage} + \begin{minipage}[t]{4.3cm} + \underline{110 dumbbell}\\ + $E_f=1.76\, eV$\\ + \includegraphics[width=3.8cm]{c_in_si_int_dumbbell_0.eps} + \end{minipage} + \begin{minipage}[t]{4.3cm} + \underline{Hexagonal} \hspace{4pt} + \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\ + $E_f^{\star}\approx5.6\, eV$ (unstable!)\\ + \includegraphics[width=3.8cm]{c_in_si_int_hexa_0.eps} + \end{minipage} - foo + \underline{Random insertion} + + \footnotesize + +\begin{minipage}[t]{3.3cm} + $E_f=0.47\, eV$\\ + \includegraphics[width=3.3cm]{c_in_si_int_001db_0.eps} + \begin{picture}(0,0)(-15,-3) + 001 dumbbell + \end{picture} +\end{minipage} +\begin{minipage}[t]{3.3cm} + $E_f=1.62\, eV$\\ + \includegraphics[width=3.2cm]{c_in_si_int_rand_162_0.eps} +\end{minipage} +\begin{minipage}[t]{3.3cm} + $E_f=2.39\, eV$\\ + \includegraphics[width=3.1cm]{c_in_si_int_rand_239_0.eps} +\end{minipage} +\begin{minipage}[t]{3.0cm} + $E_f=3.41\, eV$\\ + \includegraphics[width=3.3cm]{c_in_si_int_rand_341_0.eps} +\end{minipage} \end{slide} \begin{slide} {\large\bf - Results + Simulation details } - Carbon interstitial experiments: + \small \vspace{8pt} - \small - - \begin{minipage}[t]{4.0cm} - \underline{Tetrahedral} - \begin{itemize} - \item $E_F=2.67\, eV$ - \item tetrahedral bond - \end{itemize} - \end{minipage} - \hspace{0.3cm} - \begin{minipage}[t]{4.0cm} - \underline{110 dumbbell} - \begin{itemize} - \item $E_F=1.76\, eV$ - \item C forms 3 bonds - \end{itemize} - \end{minipage} - \hspace{0.3cm} - \begin{minipage}[t]{4.0cm} - \underline{Hexagonal} - \begin{itemize} - \item $E_F\sim5.6\, eV$ - \item unstable! - \end{itemize} - \end{minipage} + SiC precipitation simulations: \vspace{8pt} - \begin{minipage}{4.3cm} - \includegraphics[width=3.8cm]{c_in_si_int_tetra_0.eps} - \end{minipage} - \begin{minipage}{4.3cm} - \includegraphics[width=3.8cm]{c_in_si_int_dumbbell_0.eps} - \end{minipage} - \begin{minipage}{4.3cm} - \includegraphics[width=3.8cm]{c_in_si_int_hexa_0.eps} - \end{minipage} + \begin{pspicture}(0,0)(12,8) + % nodes + \rput(3.5,6.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{ + \parbox{7cm}{ + \begin{itemize} + \item Initial configuration: $31\times31\times31$ unit cells Si + \item Periodic boundary conditions + \item $T=450\, ^{\circ}C$ + \item Equilibration of $E_{kin}$ and $E_{pot}$ for $600\, fs$ + \end{itemize} + }}}} + \rput(3.5,3.2){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{ + \parbox{7cm}{ + Insertion of $6000$ carbon atoms at constant\\ + temperature into: + \begin{itemize} + \item Total simulation volume {\pnode{in1}} + \item Volume of minimal SiC precipitation {\pnode{in2}} + \item Volume of necessary amount of Si {\pnode{in3}} + \end{itemize} + }}}} + \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{ + \parbox{3.5cm}{ + Cooling down to $20\, ^{\circ}C$ + }}}} + \ncline[]{->}{init}{insert} + \ncline[]{->}{insert}{cool} + \psframe[fillstyle=solid,fillcolor=white](7.5,1.8)(13.5,7.8) + \psframe[fillstyle=solid,fillcolor=lightgray](9,3.3)(12,6.3) + \psframe[fillstyle=solid,fillcolor=gray](9.25,3.55)(11.75,6.05) + \rput(7.9,4.8){\pnode{ins1}} + \rput(9.22,4.4){\pnode{ins2}} + \rput(10.5,4.8){\pnode{ins3}} + \ncline[]{->}{in1}{ins1} + \ncline[]{->}{in2}{ins2} + \ncline[]{->}{in3}{ins3} + \end{pspicture} \end{slide} \begin{slide} {\large\bf - Results + Very first results of the SiC precipitation runs } - \vspace{8pt} - - Carbon \underline{random insertion} experiments: - - \vspace{8pt} + \footnotesize - bar + \begin{minipage}[b]{6.9cm} + \includegraphics[width=6.3cm]{../plot/sic_prec_energy.ps} + \includegraphics[width=6.3cm]{../plot/sic_prec_temp.ps} + \end{minipage} + \begin{minipage}[b]{5.5cm} + \begin{itemize} + \item {\color{red} Total simulation volume} + \item {\color{green} Volume of minimal SiC precipitation} + \item {\color{blue} Volume of necessary amount of Si} + \end{itemize} + \vspace{40pt} + \includegraphics[width=6.3cm]{../plot/foo150.ps} + \end{minipage} \end{slide} \begin{slide} {\large\bf - Results + Very first results of the SiC precipitation runs } - SiC-precipitation experiments: + \begin{minipage}[t]{6.9cm} + \includegraphics[width=6.3cm]{../plot/sic_pc.ps} + \includegraphics[width=6.3cm]{../plot/foo_end.ps} + \hspace{12pt} + \end{minipage} + \begin{minipage}[c]{5.5cm} + \includegraphics[width=6.0cm]{sic_si-c-n.eps} + \end{minipage} \end{slide} \begin{slide} {\large\bf - Conclusion / Outlook + Summary / Outlook } +\vspace{24pt} + +\begin{itemize} + \item Importance of understanding the SiC precipitation mechanism + \item Interstitial configurations in silicon using the Albe potential + \item Indication of SiC precipitation +\end{itemize} + +\vspace{24pt} + +\begin{itemize} + \item Displacement and stress calculations + \item Refinement of simulation sequence to create 3C-SiC + \item Analyzing self-designed Si/SiC interface +\end{itemize} + \end{slide} \end{document}