X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=posic%2Ftalks%2Fdpg_2008.tex;h=483f760d62bb05491b787a15b3cff0c3e487fc77;hp=d518610b1ae605960cef1ba7cb87b63d9c93195b;hb=5ae918a991fba3555ed19d642568f3c9cfcd9c95;hpb=9991d2da9e3c1ff1239bfcb9362e77d99451010b diff --git a/posic/talks/dpg_2008.tex b/posic/talks/dpg_2008.tex index d518610..483f760 100644 --- a/posic/talks/dpg_2008.tex +++ b/posic/talks/dpg_2008.tex @@ -20,6 +20,9 @@ \usepackage{pstricks} \usepackage{pst-node} +%\usepackage{epic} +%\usepackage{eepic} + \usepackage{graphicx} \graphicspath{{../img/}} @@ -119,38 +122,7 @@ % contents -\begin{slide} - - \begin{center} - {\bf - Molecular dynamics simulation study\\ - of the silicon carbide precipitation process - } - \end{center} - - \vspace{16pt} - - {\large\bf - Outline - } - - \vspace{16pt} - - \begin{itemize} - \item Motivation / Introduction - \item Molecular dynamics simulation details - \begin{itemize} - \item Integrator, potential, ensemble control - \item Simulation sequence - \end{itemize} - \item Simulation results - \begin{itemize} - \item Interstitials in silicon - \item SiC-precipitation experiments - \end{itemize} - \item Conclusion / Outlook - \end{itemize} -\end{slide} +% no contents for such a short talk! % start of contents @@ -162,7 +134,7 @@ \vspace{16pt} - Reasons for investigating C in Si: + Reasons for understanding the SiC precipitation process: \begin{itemize} \item 3C-SiC wide band gap semiconductor formation @@ -177,16 +149,17 @@ \begin{itemize} \item Unit cell: \begin{itemize} - \item {\color{yellow}fcc} $+$ + \item {\color{orange}fcc} $+$ \item {\color{gray}fcc shifted $1/4$ of volume diagonal} \end{itemize} - \item Lattice constants: $4a_{Si}\approx5a_{SiC}$ + \item Lattice constants: + \[ + 4a_{Si}\approx5a_{SiC} + \] \item Silicon density: \[ - \frac{n_{SiC}}{n_{Si}}= - \frac{4/a_{SiC}^3}{8/a_{Si}^3}= - \frac{5^3}{2\cdot4^3}={\color{cyan}97,66}\,\% - \] + \frac{n_{SiC}}{n_{Si}}=97,66\,\% + \] \end{itemize} \end{minipage} \hspace{8pt} @@ -241,7 +214,7 @@ Experimentally observed: \begin{itemize} \item Minimal diameter of precipitation: 4 - 5 nm - \item (hkl)-planes identical for Si and SiC + \item Equal orientation of Si and SiC (hkl)-planes \end{itemize} \end{slide} @@ -268,14 +241,14 @@ Application details: \begin{itemize} \item Integrator: Velocity Verlet, timestep: $1\, fs$ - \item Ensemble control: NVT, Berendsen thermostat, $\tau=100.0$ + \item Ensemble: NVT, Berendsen thermostat, $\tau=100.0$ \item Potential: Tersoff-like bond order potential\\ \[ E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right] \] \begin{center} - {\scriptsize P. Erhart und K. Albe. Phys. Rev. B 71 (2005) 035211} + {\scriptsize P. Erhart and K. Albe. Phys. Rev. B 71 (2005) 035211} \end{center} \end{itemize} @@ -291,346 +264,256 @@ Simulation details } - \vspace{20pt} - - Interstitial experiments: - - \vspace{12pt} - - \begin{itemize} - \item Initial configuration: $9\times9\times9$ unit cells Si - \item Periodic boundary conditions - \item $T=0 \, K$ - \item Insertion of Si / C atom at - \begin{itemize} - \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral} - \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal} - \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$\\ - $\rightarrow$ {\color{yellow}110 dumbbell} - \item random positions (critical distance check) - \end{itemize} - \item Relaxation time: $2\, ps$ - \item Optional heating-up - \end{itemize} - - \begin{picture}(0,0)(-210,-45) - \includegraphics[width=6cm]{unit_cell.eps} - \end{picture} - -\end{slide} - -\begin{slide} - - {\large\bf - Simulation details - } + \vspace{8pt} - \small + Interstitial simulations: - SiC precipitation experiments: + \vspace{8pt} - \begin{pspicture}(0,0)(12,8) - % nodes - \rput(4.5,6.5){\rnode{init}{\psframebox{\parbox{7cm}{ + \begin{pspicture}(0,0)(7,8) + \rput(3.5,7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{ + \parbox{7cm}{ \begin{itemize} - \item Initial configuration: $31\times31\times31$ unit cells Si + \item Initial configuration: $9\times9\times9$ unit cells Si \item Periodic boundary conditions - \item $T=450\, ^{\circ}C$ - \item Equilibration of $E_{kin}$ and $E_{pot}$ for $600\, fs$ + \item $T=0 \, K$ \end{itemize} }}}} - \rput(4.5,4.5){\rnode{tc1}{\psframebox[fillstyle=solid,fillcolor=red]{ - $T=450\pm 1\, ^{\circ}C$}}} - \rput(7,3.5){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{ - \parbox{3cm}{ - Insertion of 10 atoms\\ - at random positions}}}} - \rput(2,3.5){\rnode{adj1}{\psframebox[fillstyle=solid,fillcolor=red]{ - \parbox{3.5cm}{ - Adjusting temperature\\ - for another $100\, fs$}}}} - \rput(7,2.5){\rnode{nc}{\psframebox[fillstyle=solid,fillcolor=red]{ - $N_{atoms}=6000$}}} - \rput(4.5,2){\rnode{tc2}{\psframebox[fillstyle=solid,fillcolor=cyan]{ - $T=T_{set}$}}} - \rput(7,1){\rnode{td}{\psframebox[fillstyle=solid,fillcolor=cyan]{ - $T_{set}:=T_{set}-1\, ^{\circ}C$}}} - \rput(2,1){\rnode{adj2}{\psframebox[fillstyle=solid,fillcolor=cyan]{ - \parbox{3.5cm}{ - Adjusting temperature\\ - for another $50\, fs$}}}} - \rput(7,0){\rnode{tc3}{\psframebox[fillstyle=solid,fillcolor=cyan]{ - $T_{set}=20\, ^{\circ}C$}}} - \rput(10,0){\rnode{end}{\psframebox{End}}} - % help nodes - \rput(7,4.5){\pnode{tc1-h}} - \rput(2,4.5){\pnode{tc1-hh}} - \rput(4.5,2.5){\pnode{nc-h}} - \rput(9,2.5){\pnode{nc-hh}} - \rput(9,2){\pnode{tc2-h}} - \rput(2,2){\pnode{tc2-hh}} - \rput(4.5,0){\pnode{tc3-h}} - % direct lines - \ncline[]{->}{init}{tc1} - \ncline[]{->}{adj1}{tc1} - \ncline[]{->}{insert}{nc} - \ncline[]{->}{adj2}{tc2} - \ncline[]{->}{tc2}{td} - \lput*{0}{yes} - \ncline[]{->}{td}{tc3} - \ncline[]{->}{tc3}{end} - \lput*{0}{yes} - % lines using help nodes - \ncline[]{tc1}{tc1-h} - \lput*{0}{yes} - \ncline[]{->}{tc1-h}{insert} - \ncline[]{tc1}{tc1-hh} - \lput*{0}{no} - \ncline[]{->}{tc1-hh}{adj1} - \ncline[]{nc}{nc-h} - \lput*{0}{no} - \ncline[]{->}{nc-h}{tc1} - \ncline[]{nc}{nc-hh} - \ncline[]{-}{nc-hh}{tc2-h} - \ncline[]{->}{tc2-h}{tc2} - \lput*{0}{yes, {\footnotesize $T_{set}:=450\, ^{\circ}C$}} - \ncline[]{tc2}{tc2-hh} - \lput*{0}{no} - \ncline[]{->}{tc2-hh}{adj2} - \ncline[]{tc3}{tc3-h} - \lput*{0}{no} - \ncline[]{->}{tc3-h}{tc2} - % insertion volumes - \psframe[fillstyle=solid,fillcolor=white](9.5,1.3)(13.5,5.3) - \psframe[fillstyle=solid,fillcolor=lightgray](10,1.8)(13,4.8) - \psframe[fillstyle=solid,fillcolor=gray](10.5,2.3)(12.5,4.3) - \rput(9.75,3){\pnode{ins1}} - \rput(10.25,3.3){\pnode{ins2}} - \rput(10.75,3.6){\pnode{ins3}} - \ncline[]{-}{insert}{ins1} - \ncline[]{-}{insert}{ins2} - \ncline[]{-}{insert}{ins3} - \psframe[fillstyle=solid,fillcolor=white](9.5,7.6)(13.5,8.1) - \psframe[fillstyle=solid,fillcolor=lightgray](9.5,6.8)(13.5,7.3) - \psframe[fillstyle=solid,fillcolor=gray](9.5,6)(13.5,6.5) - \rput(11.5,7.85){{\tiny Simulation volume: - $31\times31\times31\, a^3_{Si}$}} - \rput(11.5,7.05){{\tiny Volume of minimal SiC precipitation}} - \rput(11.5,6.25){{\tiny Volume of necessary amount of Si}} +\rput(3.5,3.5){\rnode{insert}{\psframebox{ + \parbox{7cm}{ + Insertion of C / Si atom: + \begin{itemize} + \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral} + \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal} + \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$\\ + $\rightarrow$ {\color{magenta}110 dumbbell} + \item random positions (critical distance check) + \end{itemize} + }}}} + \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{ + \parbox{3.5cm}{ + Relaxation time: $2\, ps$ + }}}} + \ncline[]{->}{init}{insert} + \ncline[]{->}{insert}{cool} \end{pspicture} + \begin{picture}(0,0)(-210,-45) + \includegraphics[width=6cm]{unit_cell.eps} + \end{picture} + \end{slide} \begin{slide} {\large\bf Results - } - - Si self-interstitial experiments: - - {\footnotesize - {\bf Note:} - \begin{itemize} - \item $r_{cutoff}^{Si-Si}=2.96>\frac{5.43}{2}$ - \item Bond length near $r_{cutoff} \Rightarrow$ small bond strength - \end{itemize} - } - - \vspace{8pt} + } - Si self-interstitial runs \small - \begin{minipage}[t]{4.0cm} - \underline{Tetrahedral} - \begin{itemize} - \item $E_f=3.41\, eV$ - \item essentialy tetrahedral\\ - bonds - \end{itemize} - \end{minipage} - \hspace{0.3cm} - \begin{minipage}[t]{4.0cm} - \underline{110 dumbbell} - \begin{itemize} - \item $E_f=4.39\, eV$ - \item essentially 4 bonds - \end{itemize} - \end{minipage} - \hspace{0.3cm} - \begin{minipage}[t]{4.0cm} - \underline{Hexagonal} - \begin{itemize} - \item $E_f^{\star}\approx4.48\, eV$ - \item unstable! - \end{itemize} - \end{minipage} - - \vspace{8pt} - \begin{minipage}[t]{4.3cm} + \underline{Tetrahedral}\\ + $E_f=3.41\, eV$\\ \includegraphics[width=3.8cm]{si_self_int_tetra_0.eps} \end{minipage} \begin{minipage}[t]{4.3cm} + \underline{110 dumbbell}\\ + $E_f=4.39\, eV$\\ \includegraphics[width=3.8cm]{si_self_int_dumbbell_0.eps} \end{minipage} \begin{minipage}[t]{4.3cm} + \underline{Hexagonal} \hspace{4pt} + \href{../video/si_self_int_hexa.avi}{$\rhd$}\\ + $E_f^{\star}\approx4.48\, eV$ (unstable!)\\ \includegraphics[width=3.8cm]{si_self_int_hexa_0.eps} - \begin{center} - \href{../video/si_self_int_hexa.avi}{$\rhd$} - \end{center} \end{minipage} -\end{slide} - -\begin{slide} - - {\large\bf - Results - } - - \vspace{8pt} - - Si self-interstitial \underline{random insertion} experiments: - - \small - - \vspace{8pt} - - \begin{minipage}[t]{4.0cm} - \begin{itemize} - \item $E_f=3.97\, eV$ - \item 3 identical weak bonds - \item displaced in volume\\ diagonal - \end{itemize} - \end{minipage} - \hspace{0.3cm} - \begin{minipage}[t]{4.0cm} - \begin{itemize} - \item $E_f=3.75\, eV$ - \item 4 identical weak bonds - \item displaced in plane\\ diagonal - \end{itemize} - \end{minipage} - \hspace{0.3cm} - \begin{minipage}[t]{4.0cm} - \begin{itemize} - \item $E_f=3.56\, eV$ - \item single weak bond - \item displaced along\\ $x$-direction - \item closest to tetrahedral\\ configuration - \end{itemize} - \end{minipage} - - \vspace{8pt} + \underline{Random insertion} \begin{minipage}{4.3cm} + $E_f=3.97\, eV$\\ \includegraphics[width=3.8cm]{si_self_int_rand_397_0.eps} \end{minipage} \begin{minipage}{4.3cm} + $E_f=3.75\, eV$\\ \includegraphics[width=3.8cm]{si_self_int_rand_375_0.eps} \end{minipage} \begin{minipage}{4.3cm} + $E_f=3.56\, eV$\\ \includegraphics[width=3.8cm]{si_self_int_rand_356_0.eps} \end{minipage} - \vspace{8pt} - - \begin{center} - {\footnotesize - {\bf Note:} Displacements relative to tetrahedral configuration - } - \end{center} - \end{slide} \begin{slide} {\large\bf Results - } - - \vspace{8pt} - - Carbon interstitial experiments: - - \vspace{12pt} + } - Carbon interstitial runs \small - \begin{minipage}[t]{4.0cm} - \underline{Tetrahedral} - \begin{itemize} - \item $E_f=2.67\, eV$ - \item tetrahedral bond - \end{itemize} - \end{minipage} - \hspace{0.3cm} - \begin{minipage}[t]{4.0cm} - \underline{110 dumbbell} - \begin{itemize} - \item $E_f=1.76\, eV$ - \item C forms 3 bonds - \end{itemize} - \end{minipage} - \hspace{0.3cm} - \begin{minipage}[t]{4.0cm} - \underline{Hexagonal} - \begin{itemize} - \item $E_f^{\star}\approx5.6\, eV$ - \item unstable! - \end{itemize} - \end{minipage} - - \vspace{8pt} - \begin{minipage}[t]{4.3cm} + \underline{Tetrahedral}\\ + $E_f=2.67\, eV$\\ \includegraphics[width=3.8cm]{c_in_si_int_tetra_0.eps} \end{minipage} \begin{minipage}[t]{4.3cm} + \underline{110 dumbbell}\\ + $E_f=1.76\, eV$\\ \includegraphics[width=3.8cm]{c_in_si_int_dumbbell_0.eps} \end{minipage} \begin{minipage}[t]{4.3cm} + \underline{Hexagonal} \hspace{4pt} + \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\ + $E_f^{\star}\approx5.6\, eV$ (unstable!)\\ \includegraphics[width=3.8cm]{c_in_si_int_hexa_0.eps} - \begin{center} - \href{../video/c_in_si_int_hexa.avi}{$\rhd$} - \end{center} \end{minipage} + \underline{Random insertion} + + \footnotesize + +\begin{minipage}[t]{3.3cm} + $E_f=0.47\, eV$\\ + \includegraphics[width=3.3cm]{c_in_si_int_001db_0.eps} + \begin{picture}(0,0)(-15,-3) + 001 dumbbell + \end{picture} +\end{minipage} +\begin{minipage}[t]{3.3cm} + $E_f=1.62\, eV$\\ + \includegraphics[width=3.2cm]{c_in_si_int_rand_162_0.eps} +\end{minipage} +\begin{minipage}[t]{3.3cm} + $E_f=2.39\, eV$\\ + \includegraphics[width=3.1cm]{c_in_si_int_rand_239_0.eps} +\end{minipage} +\begin{minipage}[t]{3.0cm} + $E_f=3.41\, eV$\\ + \includegraphics[width=3.3cm]{c_in_si_int_rand_341_0.eps} +\end{minipage} + \end{slide} \begin{slide} {\large\bf - Results + Simulation details } + \small + \vspace{8pt} - Carbon \underline{random insertion} experiments: + SiC precipitation simulations: \vspace{8pt} - bar + \begin{pspicture}(0,0)(12,8) + % nodes + \rput(3.5,6.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{ + \parbox{7cm}{ + \begin{itemize} + \item Initial configuration: $31\times31\times31$ unit cells Si + \item Periodic boundary conditions + \item $T=450\, ^{\circ}C$ + \item Equilibration of $E_{kin}$ and $E_{pot}$ for $600\, fs$ + \end{itemize} + }}}} + \rput(3.5,3.2){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{ + \parbox{7cm}{ + Insertion of $6000$ carbon atoms at constant\\ + temperature into: + \begin{itemize} + \item Total simulation volume {\pnode{in1}} + \item Volume of minimal SiC precipitation {\pnode{in2}} + \item Volume of necessary amount of Si {\pnode{in3}} + \end{itemize} + }}}} + \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{ + \parbox{3.5cm}{ + Cooling down to $20\, ^{\circ}C$ + }}}} + \ncline[]{->}{init}{insert} + \ncline[]{->}{insert}{cool} + \psframe[fillstyle=solid,fillcolor=white](7.5,1.8)(13.5,7.8) + \psframe[fillstyle=solid,fillcolor=lightgray](9,3.3)(12,6.3) + \psframe[fillstyle=solid,fillcolor=gray](9.25,3.55)(11.75,6.05) + \rput(7.9,4.8){\pnode{ins1}} + \rput(9.22,4.4){\pnode{ins2}} + \rput(10.5,4.8){\pnode{ins3}} + \ncline[]{->}{in1}{ins1} + \ncline[]{->}{in2}{ins2} + \ncline[]{->}{in3}{ins3} + \end{pspicture} + +\end{slide} + +\begin{slide} + + {\large\bf + Very first results of the SiC precipitation runs + } + + \footnotesize + + \begin{minipage}[b]{6.9cm} + \includegraphics[width=6.3cm]{../plot/sic_prec_energy.ps} + \includegraphics[width=6.3cm]{../plot/sic_prec_temp.ps} + \end{minipage} + \begin{minipage}[b]{5.5cm} + \begin{itemize} + \item {\color{red} Total simulation volume} + \item {\color{green} Volume of minimal SiC precipitation} + \item {\color{blue} Volume of necessary amount of Si} + \end{itemize} + \vspace{40pt} + \includegraphics[width=6.3cm]{../plot/foo150.ps} + \end{minipage} \end{slide} \begin{slide} {\large\bf - Results + Very first results of the SiC precipitation runs } - SiC-precipitation experiments: + \begin{minipage}[t]{6.9cm} + \includegraphics[width=6.3cm]{../plot/sic_pc.ps} + \includegraphics[width=6.3cm]{../plot/foo_end.ps} + \hspace{12pt} + \end{minipage} + \begin{minipage}[c]{5.5cm} + \includegraphics[width=6.0cm]{sic_si-c-n.eps} + \end{minipage} \end{slide} \begin{slide} {\large\bf - Conclusion / Outlook + Summary / Outlook } +\vspace{24pt} + +\begin{itemize} + \item Importance of understanding the SiC precipitation mechanism + \item Interstitial configurations in silicon using the Albe potential + \item Indication of SiC precipitation +\end{itemize} + +\vspace{24pt} + +\begin{itemize} + \item Displacement and stress calculations + \item Refinement of simulation sequence to create 3C-SiC + \item Analyzing self-designed Si/SiC interface +\end{itemize} + \end{slide} \end{document}