X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=posic%2Ftalks%2Fmpi_app.tex;h=2c9d67f5198a6ab4bedef0e963d7091b665ffd09;hp=f3e3a124203cedbc824fc2a9b1cd370c9cc36d83;hb=b6c9035922c11a92c52e0b0752d44225457d9966;hpb=61442ed703dca521cdf1d4f89430d1f2cd136abe diff --git a/posic/talks/mpi_app.tex b/posic/talks/mpi_app.tex index f3e3a12..2c9d67f 100644 --- a/posic/talks/mpi_app.tex +++ b/posic/talks/mpi_app.tex @@ -143,6 +143,9 @@ E\\ \end{center} \end{slide} +% no vertical centering +\centerslidesfalse + \ifnum1=0 % intro @@ -296,7 +299,6 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\ \end{slide} -\fi % fabrication \begin{slide} @@ -309,13 +311,15 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\ \vspace{2pt} +\begin{center} {\color{gray} \emph{Silicon carbide --- Born from the stars, perfected on earth.} } +\end{center} \vspace{2pt} -SiC thin film by MBE \& CVD +SiC thin films by MBE \& CVD \begin{itemize} \item Much progress achieved in homo/heteroepitaxial SiC thin film growth \item \underline{Commercially available} semiconductor power devices based on @@ -328,141 +332,126 @@ SiC thin film by MBE \& CVD \includegraphics[width=2.0cm]{cree.eps} \end{picture} -Alternative method: Ion beam synthesis of SiC in Si +\vspace{-0.2cm} - \begin{itemize} - \item \underline{Sublimation growth using the modified Lely method} - \begin{itemize} - \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$ - \item Surrounded by polycrystalline SiC in a graphite crucible\\ - at $T=2100-2400 \, ^{\circ} \text{C}$ - \item Deposition of supersaturated vapor on cooler seed crystal - \end{itemize} - \item \underline{Homoepitaxial growth using CVD} - \begin{itemize} - \item Step-controlled epitaxy on off-oriented 6H-SiC substrates - \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$ - \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC - \end{itemize} - \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE} - \begin{itemize} - \item Two steps: carbonization and growth - \item $T=650-1050 \, ^{\circ} \text{C}$ - \item SiC/Si lattice mismatch $\approx$ 20 \% - \item Quality and size not yet sufficient - \end{itemize} - \end{itemize} +Alternative approach: +Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) - \begin{picture}(0,0)(-280,-65) - \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps} - \end{picture} - \begin{picture}(0,0)(-280,-55) - \begin{minipage}{5cm} - {\tiny - NASA: 6H-SiC and 3C-SiC LED\\[-7pt] - on 6H-SiC substrate - } - \end{minipage} - \end{picture} - \begin{picture}(0,0)(-265,-150) - \includegraphics[width=2.4cm]{m_lely.eps} - \end{picture} - \begin{picture}(0,0)(-333,-175) - \begin{minipage}{5cm} - {\tiny - 1. Lid\\[-7pt] - 2. Heating\\[-7pt] - 3. Source\\[-7pt] - 4. Crucible\\[-7pt] - 5. Insulation\\[-7pt] - 6. Seed crystal - } - \end{minipage} - \end{picture} - \begin{picture}(0,0)(-230,-35) - \framebox{ - {\footnotesize\color{blue}\bf Hex: micropipes along c-axis} +\vspace{0.2cm} + +\scriptsize + +\framebox{ +\begin{minipage}{3.15cm} + \begin{center} +\includegraphics[width=3cm]{imp.eps}\\ + {\tiny + Carbon implantation } - \end{picture} - \begin{picture}(0,0)(-230,-10) - \framebox{ - \begin{minipage}{3cm} - {\footnotesize\color{blue}\bf 3C-SiC fabrication\\ - less advanced} - \end{minipage} + \end{center} +\end{minipage} +\begin{minipage}{3.15cm} + \begin{center} +\includegraphics[width=3cm]{annealing.eps}\\ + {\tiny + \unit[12]{h} annealing at \degc{1200} } - \end{picture} + \end{center} +\end{minipage} +} +\begin{minipage}{5.5cm} + \includegraphics[width=5.8cm]{ibs_3c-sic.eps}\\[-0.2cm] + \begin{center} + {\tiny + XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0) + } + \end{center} +\end{minipage} \end{slide} -\end{document} -\ifnum1=0 - % contents \begin{slide} {\large\bf - Outline + Systematic investigation of C implantations into Si } - \begin{itemize} - \item Implantation of C in Si --- Overview of experimental observations - \item Utilized simulation techniques and modeled problems - \begin{itemize} - \item {\color{blue}Diploma thesis}\\ - \underline{Monte Carlo} simulations - modeling the selforganization process - leading to periodic arrays of nanometric amorphous SiC - precipitates - \item {\color{blue}Doctoral studies}\\ - Classical potential \underline{molecular dynamics} simulations - \ldots\\ - \underline{Density functional theory} calculations - \ldots\\[0.2cm] - \ldots on defects and SiC precipitation in Si - \end{itemize} - \item Summary / Conclusion / Outlook - \end{itemize} +\vspace{1.7cm} +\begin{center} +\hspace{-1.0cm} +\includegraphics[width=0.75\textwidth]{imp_inv.eps} +\end{center} \end{slide} +% outline +\begin{slide} -\end{document} +{\large\bf + Outline +} +\vspace{1.7cm} +\begin{center} +\hspace{-1.0cm} +\includegraphics[width=0.75\textwidth]{imp_inv.eps} +\end{center} + +\begin{pspicture}(0,0)(0,0) +\rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{ +\begin{minipage}{11cm} +{\color{red}Diploma thesis}\\ + \underline{Monte Carlo} simulation modeling the selforganization process\\ + leading to periodic arrays of nanometric amorphous SiC precipitates +\end{minipage} +}}} +\end{pspicture} +\begin{pspicture}(0,0)(0,0) +\rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{ +\begin{minipage}{11cm} +{\color{blue}Doctoral studies}\\ + Classical potential \underline{molecular dynamics} simulations \ldots\\ + \underline{Density functional theory} calculations \ldots\\[0.2cm] + \ldots on defect formation and SiC precipitation in Si +\end{minipage} +}}} +\end{pspicture} +\begin{pspicture}(0,0)(0,0) +\psellipse[linecolor=red,linewidth=0.05cm](5,3.0)(0.8,1.0) +\end{pspicture} +\begin{pspicture}(0,0)(0,0) +\psellipse[linecolor=blue,linewidth=0.05cm](8.2,3.2)(1.5,1.6) +\end{pspicture} + +\end{slide} + +% continue here +\fi \begin{slide} - {\large\bf - Fabrication of silicon carbide - } +{\large\bf + Selforganization of nanometric amorphous SiC lamellae +} - \small +\begin{minipage}{6cm} +\includegraphics[width=6cm]{} +\end{minipage} - Alternative approach: - Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) - \begin{itemize} - \item \underline{Implantation step 1}\\ - 180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\ - $\Rightarrow$ box-like distribution of equally sized - and epitactically oriented SiC precipitates - - \item \underline{Implantation step 2}\\ - 180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\ - $\Rightarrow$ destruction of SiC nanocrystals - in growing amorphous interface layers - \item \underline{Annealing}\\ - $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\ - $\Rightarrow$ homogeneous, stoichiometric SiC layer - with sharp interfaces - \end{itemize} +\end{slide} + + +\end{document} +\ifnum1=0 + +\begin{slide} + +{\large\bf + Selforganization of nanometric amorphous SiC lamellae +} - \begin{minipage}{6.3cm} - \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm] - {\tiny - XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0) - } - \end{minipage} \framebox{ \begin{minipage}{6.3cm} \begin{center} @@ -479,9 +468,8 @@ Alternative method: Ion beam synthesis of SiC in Si \end{center} \end{minipage} } - -\end{slide} +\end{slide} \begin{slide}