X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=posic%2Ftalks%2Fmpi_app.tex;h=e90f38fe4177feeb6db1594c093e698ce9507bfb;hp=2c9d67f5198a6ab4bedef0e963d7091b665ffd09;hb=d3b0a76fe369fc79a1d014e8eef3dec01323c8fa;hpb=b6c9035922c11a92c52e0b0752d44225457d9966 diff --git a/posic/talks/mpi_app.tex b/posic/talks/mpi_app.tex index 2c9d67f..e90f38f 100644 --- a/posic/talks/mpi_app.tex +++ b/posic/talks/mpi_app.tex @@ -20,6 +20,7 @@ \usepackage{pstricks} \usepackage{pst-node} +\usepackage{pst-grad} %\usepackage{epic} %\usepackage{eepic} @@ -185,6 +186,8 @@ R. I. Scace and G. A. Slack, J. Chem. Phys. 30, 1551 (1959) \begin{slide} +\vspace*{1.8cm} + \small \begin{pspicture}(0,0)(13.5,5) @@ -388,6 +391,8 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) % outline +\fi + \begin{slide} {\large\bf @@ -401,18 +406,18 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) \end{center} \begin{pspicture}(0,0)(0,0) -\rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{ +\rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=white,gradend=red,gradlines=1000,gradmidpoint=0.5,linestyle=none]{ \begin{minipage}{11cm} -{\color{red}Diploma thesis}\\ +{\color{black}Diploma thesis}\\ \underline{Monte Carlo} simulation modeling the selforganization process\\ leading to periodic arrays of nanometric amorphous SiC precipitates \end{minipage} }}} \end{pspicture} \begin{pspicture}(0,0)(0,0) -\rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{ +\rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=white,gradend=blue,gradmidpoint=0.5,gradlines=1000,linestyle=none]{ \begin{minipage}{11cm} -{\color{blue}Doctoral studies}\\ +{\color{black}Doctoral studies}\\ Classical potential \underline{molecular dynamics} simulations \ldots\\ \underline{Density functional theory} calculations \ldots\\[0.2cm] \ldots on defect formation and SiC precipitation in Si @@ -428,28 +433,234 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0) \end{slide} -% continue here -\fi \begin{slide} {\large\bf Selforganization of nanometric amorphous SiC lamellae } -\begin{minipage}{6cm} -\includegraphics[width=6cm]{} +\begin{pspicture}(0,0)(0,0) +\psframebox[fillstyle=gradient,gradbegin=white,gradend=red,gradlines=1000,gradmidpoint=0.5,linestyle=none]{ +\begin{minipage}{14cm} +\hfill +\vspace*{0.5cm} +\end{minipage} +} +\end{pspicture} + +\small + +\vspace{0.2cm} + +\begin{itemize} + \item Regularly spaced, nanometric spherical\\ + and lamellar amorphous inclusions\\ + at the upper a/c interface + \item Carbon accumulation\\ + in amorphous volumes +\end{itemize} + +\vspace{0.4cm} + +\begin{minipage}{12cm} +\includegraphics[width=9cm]{../../nlsop/img/k393abild1_e_l.eps}\\ +{\scriptsize +XTEM bright-field, \unit[180]{keV} C$^+ \rightarrow$ Si, \degc{150}, +Dose: \unit[4.3 $\times 10^{17}$]{cm$^{-2}$} +} +\end{minipage} + +\begin{picture}(0,0)(-182,-215) +\begin{minipage}{6.5cm} +\begin{center} +\includegraphics[width=6.5cm]{../../nlsop/img/eftem.eps}\\[-0.2cm] +{\scriptsize +XTEM bright-field and respective EFTEM C map +} +\end{center} \end{minipage} +\end{picture} + +\end{slide} + +\end{document} +\ifnum1=0 + +\begin{slide} + +{\large\bf + Model displaying the formation of ordered lamellae +} + +\vspace{0.1cm} + +\begin{center} + \includegraphics[width=8.0cm]{../../nlsop/img/modell_ng_e.eps} +\end{center} + +\footnotesize + +\begin{itemize} +\item Supersaturation of C in c-Si\\ + $\rightarrow$ {\bf Carbon induced} nucleation of spherical + SiC$_x$-precipitates +\item High interfacial energy between 3C-SiC and c-Si\\ + $\rightarrow$ {\bf Amorphous} precipitates +\item \unit[20-- 30]{\%} lower silicon density of a-SiC$_x$ compared to c-Si\\ + $\rightarrow$ {\bf Lateral strain} (black arrows) +\item Implantation range near surface\\ + $\rightarrow$ {\bf Relaxation} of {\bf vertical strain component} +\item Reduction of the carbon supersaturation in c-Si\\ + $\rightarrow$ {\bf Carbon diffusion} into amorphous volumina + (white arrows) +\item Remaining lateral strain\\ + $\rightarrow$ {\bf Strain enhanced} lateral amorphisation +\item Absence of crystalline neighbours (structural information)\\ + $\rightarrow$ {\bf Stabilization} of amorphous inclusions + {\bf against recrystallization} +\end{itemize} + +\end{slide} + +\begin{slide} + +{\large\bf + Implementation of the Monte Carlo code +} + +\small + +\begin{enumerate} + \item \underline{Amorphization / Recrystallization}\\ + Ion collision in discretized target determined by random numbers + distributed according to nuclear energy loss. + Amorphization/recrystallization probability: +\[ +p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}} +\] +\begin{itemize} + \item {\color{green} $p_b$} normal `ballistic' amorphization + \item {\color{blue} $p_c$} carbon induced amorphization + \item {\color{red} $p_s$} stress enhanced amorphization +\end{itemize} +\[ +p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,} +\] +\[ +\delta (\vec r) = \left\{ +\begin{array}{ll} + 1 & \textrm{if volume at position $\vec r$ is amorphous} \\ + 0 & \textrm{otherwise} \\ +\end{array} +\right. +\] + \item \underline{Carbon incorporation}\\ + Incorporation volume determined according to implantation profile + \item \underline{Diffusion / Sputtering} + \begin{itemize} + \item Transfer fraction of C atoms + of crystalline into neighbored amorphous volumes + \item Remove surface layer + \end{itemize} +\end{enumerate} + +\end{slide} + +\begin{slide} + +\begin{minipage}{3.7cm} +{\large\bf + Results +} + +\footnotesize + +\vspace{1.0cm} + +Evolution of the \ldots +\begin{itemize} + \item continuous\\ + amorphous layer + \item a/c interface + \item lamella precipitates +\end{itemize} +\ldots reproduced!\\[1.5cm] + +{\color{blue} +\begin{center} +Experiment \& simulation\\ +in good agreement\\[1.0cm] + +Simulation is able to model the whole depth region\\[1.0cm] +\end{center} +} + +\end{minipage} +\begin{minipage}{0.4cm} +\vfill +\end{minipage} +\begin{minipage}{8.0cm} + \vspace{-0.2cm} + \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e_1-2.eps}\\ + \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e2_2-2.eps} +\end{minipage} + +\end{slide} + +\begin{slide} + +{\large\bf + Structural \& compositional details +} + +\begin{minipage}[t]{7.5cm} +\includegraphics[height=6.5cm]{../../nlsop/img/ac_cconc_ver2_e.eps}\\ +\end{minipage} +\begin{minipage}[t]{5.0cm} +\includegraphics[height=6.5cm]{../../nlsop/img/97_98_e.eps} +\end{minipage} + +\footnotesize + +\vspace{-0.1cm} + +\begin{itemize} + \item Fluctuation of C concentration in lamellae region + \item \unit[8--10]{at.\%} C saturation limit + within the respective conditions + \item Complementarily arranged and alternating sequence of layers\\ + with a high and low amount of amorphous regions + \item C accumulation in the amorphous phase / Origin of stress +\end{itemize} + +\begin{picture}(0,0)(-265,-30) +\framebox{ +\begin{minipage}{3cm} +\begin{center} +{\color{blue} +Precipitation process\\ +gets traceable\\ +by simulation! +} +\end{center} +\end{minipage} +} +\end{picture} \end{slide} \end{document} + +% continue here +\fi + \ifnum1=0 \begin{slide} {\large\bf - Selforganization of nanometric amorphous SiC lamellae + Model displaying the formation of ordered lamellae } \framebox{