X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=posic%2Ftalks%2Fupb-ua-xc.tex;h=23aff0777d5909a7b080b423d63a0713daa26105;hp=4197c0ab1ecbc77e0621617e5486c72275814a7e;hb=d6b64d4be7e48f04395e2862f4a53e0f06198e26;hpb=071e7bdd84bc69d2dde1835c2693fc1375d2bfb2 diff --git a/posic/talks/upb-ua-xc.tex b/posic/talks/upb-ua-xc.tex index 4197c0a..23aff07 100644 --- a/posic/talks/upb-ua-xc.tex +++ b/posic/talks/upb-ua-xc.tex @@ -46,6 +46,8 @@ \usepackage{upgreek} +\usepackage{miller} + \begin{document} \extraslideheight{10in} @@ -392,6 +394,49 @@ POTIM = 0.1 \end{slide} +\begin{slide} + + {\large\bf + Calculation of the defect formation energy\\ + } + + \small + + {\color{blue}Method 1} (single species) + \begin{itemize} + \item $E_{\textrm{coh}}^{\textrm{initial conf}}$: + cohesive energy per atom of the initial system + \item $E_{\textrm{coh}}^{\textrm{interstitial conf}}$: + cohesive energy per atom of the interstitial system + \item N: amount of atoms in the interstitial system + \end{itemize} + \vspace*{0.2cm} + {\color{blue} + \[ + \Rightarrow + E_{\textrm{f}}=\Big(E_{\textrm{coh}}^{\textrm{interstitial conf}} + -E_{\textrm{coh}}^{\textrm{initial conf}}\Big) N + \] + }\\[0.4cm] + {\color{magenta}Method 2} (two and more species) + \begin{itemize} + \item $E$: energy of the interstitial system + (with respect to the ground state of the free atoms!) + \item $N_{\text{Si}}$, $N_{\text{C}}$: + amount of Si and C atoms + \item $\mu_{\text{Si}}$, $\mu_{\text{C}}$: + chemical potential (cohesive energy) of Si and C + \end{itemize} + \vspace*{0.2cm} + {\color{magenta} + \[ + \Rightarrow + E_{\textrm{f}}=E-N_{\text{Si}}\mu_{\text{Si}}-N_{\text{C}}\mu_{\text{C}} + \] + } + +\end{slide} + \begin{slide} {\large\bf @@ -443,32 +488,36 @@ POTIM = 0.1 \small - Calculation of formation energy $E_{\textrm{f}}$ - \begin{itemize} - \item $E_{\textrm{coh}}^{\textrm{initial conf}}$: - cohesive energy per atom of the initial system - \item $E_{\textrm{coh}}^{\textrm{interstitial conf}}$: - cohesive energy per atom of the interstitial system - \item N: amount of atoms in the interstitial system - \end{itemize} - \vspace*{0.2cm} - {\color{blue} - \[ - \Rightarrow - E_{\textrm{f}}=\Big(E_{\textrm{coh}}^{\textrm{interstitial conf}} - -E_{\textrm{coh}}^{\textrm{initial conf}}\Big) N - \] - } Influence of supercell size\\ \begin{minipage}{8cm} \includegraphics[width=7.0cm]{si_self_int.ps} \end{minipage} \begin{minipage}{5cm} - $E_{\textrm{f}}^{\textrm{110},\,{\color{red}32}\textrm{pc}}=3.38\textrm{ eV}$\\ + $E_{\textrm{f}}^{\hkl<1 1 0>,\,32\textrm{pc}}=3.38\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{tet},\,32\textrm{pc}}=3.41\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{hex},\,32\textrm{pc}}=3.42\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{vac},\,32\textrm{pc}}=3.51\textrm{ eV}$\\\\ $E_{\textrm{f}}^{\textrm{hex},\,54\textrm{pc}}=3.42\textrm{ eV}$\\ $E_{\textrm{f}}^{\textrm{tet},\,54\textrm{pc}}=3.45\textrm{ eV}$\\ - $E_{\textrm{f}}^{\textrm{vac},\,54\textrm{pc}}=3.47\textrm{ eV}$ + $E_{\textrm{f}}^{\textrm{vac},\,54\textrm{pc}}=3.47\textrm{ eV}$\\ + $E_{\textrm{f}}^{\hkl<1 1 0>,\,54\textrm{pc}}=3.48\textrm{ eV}$ + \end{minipage} + + Comparison with literature (PRL 88 235501 (2002)):\\[0.2cm] + \begin{minipage}{8cm} + \begin{itemize} + \item GGA and LDA + \item $E_{\text{cut-off}}=35 / 25\text{ Ry}=476 / 340\text{ eV}$ + \item 216 atom supercell + \item Gamma point only calculations + \end{itemize} + \end{minipage} + \begin{minipage}{5cm} + $E_{\textrm{f}}^{\hkl<1 1 0>}=3.31 / 2.88\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{hex}}=3.31 / 2.87\textrm{ eV}$\\ + $E_{\textrm{f}}^{\textrm{vac}}=3.17 / 3.56\textrm{ eV}$ \end{minipage} + \end{slide} @@ -507,88 +556,944 @@ POTIM = 0.1 Smearing method for the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$ and $k$-point mesh + \begin{minipage}{4.4cm} + \includegraphics[width=4.4cm]{sic_smear_k.ps} + \end{minipage} + \begin{minipage}{4.4cm} + \includegraphics[width=4.4cm]{c_smear_k.ps} + \end{minipage} + \begin{minipage}{4.3cm} + \includegraphics[width=4.4cm]{si_smear_k.ps} + \end{minipage}\\[0.3cm] + \begin{itemize} + \item Convergence reached at $6\times 6\times 6$ k-point mesh + \item No difference between Gauss ($\sigma=0.05$) + and tetrahedron smearing method! + \end{itemize} + \begin{center} + $\Downarrow$\\ + {\color{blue}\bf + Gauss ($\sigma=0.05$) smearing + and $6\times 6\times 6$ Monkhorst $k$-point mesh used + } + \end{center} + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ...\\ + } + + \underline{Symmetry (in defect simulations)} + + \begin{center} + {\color{red}No} + difference in $1\times 1\times 1$ Type 2 defect calculations\\ + $\Downarrow$\\ + Symmetry precission (SYMPREC) small enough\\ + $\Downarrow$\\ + {\bf\color{blue}Symmetry switched on}\\ + \end{center} + + \underline{Real space projection} + + \begin{center} + Error in lattice constant of plain Si ($1\times 1\times 1$ Type 2): + $0.025\,\%$\\ + Error in position of the \hkl<1 1 0> interstitital in Si + ($1\times 1\times 1$ Type 2): + $0.026\,\%$\\ + $\Downarrow$\\ + {\bf\color{blue} + Real space projection used for 'large supercell' simulations} + \end{center} + +\end{slide} + +\begin{slide} + + {\large\bf + Review (so far) ... + } + + Energy cut-off\\ + + \begin{center} + + {\small + 3C-SiC equilibrium lattice constant and free energy\\ + \includegraphics[width=7cm]{plain_sic_lc.ps}\\ + $\rightarrow$ Convergence reached at 650 eV\\[0.2cm] + } + + $\Downarrow$\\ + + {\bf\color{blue} + 650 eV used as energy cut-off + } + + \end{center} + +\end{slide} + +\begin{slide} + + {\large\bf + Not answered (so far) ...\\ + } + +\vspace{1.5cm} + + \LARGE + \bf + \color{blue} + + \begin{center} + Continue\\ + with\\ + US LDA? + \end{center} + +\vspace{1.5cm} + +\end{slide} + +\begin{slide} + + {\large\bf + Final parameter choice + } + + \footnotesize + + \underline{Param 1}\\ + My first choice. Used for more accurate calculations. + \begin{itemize} + \item $6\times 6 \times 6$ Monkhorst k-point mesh + \item $E_{\text{cut-off}}=650\text{ eV}$ + \item Gaussian smearing ($\sigma=0.05$) + \item Use symmetry + \end{itemize} + \vspace*{0.2cm} + \underline{Param 2}\\ + After talking to the pros! + \begin{itemize} + \item $\Gamma$-point only + \item $E_{\text{cut-off}}=xyz\text{ eV}$ + \item Gaussian smearing ($\sigma=0.05$) + \item Use symmetry + \item Real space projection (Auto, Medium) for 'large' simulations + \end{itemize} + \vspace*{0.2cm} + {\color{blue} + In both parameter sets the ultra soft pseudo potential method + as well as the projector augmented wave method is used with both, + the LDA and GGA exchange correlation potential! + } +\end{slide} + +\begin{slide} + + \footnotesize + + {\large\bf + Properties of Si, C and SiC using the new parameters\\ + } + + $2\times 2\times 2$ Type 2 supercell, Param 1, LDA, US PP\\[0.2cm] + \begin{tabular}{|l|l|l|l|} + \hline + & c-Si & c-C (diamond) & 3C-SiC \\ + \hline + Lattice constant [\AA] & 5.389 & 3.527 & 4.319 \\ + Expt. [\AA] & 5.429 & 3.567 & 4.359 \\ + Error [\%] & {\color{green}0.7} & {\color{green}1.1} & {\color{green}0.9} \\ + \hline + Cohesive energy [eV] & -5.277 & -8.812 & -7.318 \\ + Expt. [eV] & -4.63 & -7.374 & -6.340 \\ + Error [\%] & {\color{red}14.0} & {\color{red}19.5} & {\color{red}15.4} \\ + \hline + \end{tabular}\\ + + \begin{minipage}{10cm} + $2\times 2\times 2$ Type 2 supercell, 3C-SiC, Param 1\\[0.2cm] + \begin{tabular}{|l|l|l|l|} + \hline + & {\color{magenta}US PP, GGA} & PAW, LDA & PAW, GGA \\ + \hline + Lattice constant [\AA] & 4.370 & 4.330 & 4.379 \\ + Error [\%] & {\color{green}0.3} & {\color{green}0.7} & {\color{green}0.5} \\ + \hline + Cohesive energy [eV] & -6.426 & -7.371 & -6.491 \\ + Error [\%] & {\color{green}1.4} & {\color{red}16.3} & {\color{green}2.4} \\ + \hline + \end{tabular} + \end{minipage} + \begin{minipage}{3cm} + US PP, GGA\\[0.2cm] + \begin{tabular}{|l|l|} + \hline + c-Si & c-C \\ + \hline + 5.455 & 3.567 \\ + {\color{green}0.5} & {\color{green}0.01} \\ + \hline + -4.591 & -7.703 \\ + {\color{green}0.8} & {\color{orange}4.5} \\ + \hline + \end{tabular} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + Energy cut-off for $\Gamma$-point only caclulations + } + + $2\times 2\times 2$ Type 2 supercell, Param 2, US PP, LDA, 3C-SiC\\[0.2cm] + \includegraphics[width=5.5cm]{sic_32pc_gamma_cutoff.ps} + \includegraphics[width=5.5cm]{sic_32pc_gamma_cutoff_lc.ps}\\ + $\Rightarrow$ Use 300 eV as energy cut-off?\\[0.2cm] + $2\times 2\times 2$ Type 2 supercell, Param 2, 300 eV, US PP, GGA\\[0.2cm] + \small + \begin{minipage}{10cm} + \begin{tabular}{|l|l|l|l|} + \hline + & c-Si & c-C (diamond) & 3C-SiC \\ + \hline + Lattice constant [\AA] & 5.470 & 3.569 & 4.364 \\ + Error [\%] & {\color{green}0.8} & {\color{green}0.1} & {\color{green}0.1} \\ + \hline + Cohesive energy [eV] & -4.488 & -7.612 & -6.359 \\ + Error [\%] & {\color{orange}3.1} & {\color{orange}3.2} & {\color{green}0.3} \\ + \hline + \end{tabular} + \end{minipage} + \begin{minipage}{2cm} + {\LARGE + ${\color{green}\surd}$ + } + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + C \hkl<1 0 0> interstitial migration along \hkl<1 1 0> + in c-Si (Albe) + } + + \small + + \begin{minipage}[t]{4.2cm} + \underline{Starting configuration}\\ + \includegraphics[width=4cm]{c_100_mig/start.eps} + \end{minipage} + \begin{minipage}[t]{4.0cm} + \vspace*{0.8cm} + $\Delta x=\frac{1}{4}a_{\text{Si}}=1.357\text{ \AA}$\\ + $\Delta y=\frac{1}{4}a_{\text{Si}}=1.357\text{ \AA}$\\ + $\Delta z=0.325\text{ \AA}$\\ + \end{minipage} + \begin{minipage}[t]{4.2cm} + \underline{{\bf Expected} final configuration}\\ + \includegraphics[width=4cm]{c_100_mig/final.eps}\\ + \end{minipage} + \begin{minipage}{6cm} \begin{itemize} - \item $1\times 1\times 1$ Type 0 simulations + \item Fix border atoms of the simulation cell + \item Constraints and displacement of the C atom: \begin{itemize} - \item No difference in tetrahedron method and Gauss smearing - \item ... + \item along {\color{green}\hkl<1 1 0> direction}\\ + displaced by {\color{green} $\frac{1}{10}(\Delta x,\Delta y)$} + \item C atom {\color{red}entirely fixed in position}\\ + displaced by + {\color{red}$\frac{1}{10}(\Delta x,\Delta y,\Delta z)$} \end{itemize} - \item $1\times 1\times 1$ Type 2 simulations + \item Berendsen thermostat applied + \end{itemize} + {\bf\color{blue}Expected configuration not obtained!} + \end{minipage} + \begin{minipage}{0.5cm} + \hfill + \end{minipage} + \begin{minipage}{6cm} + \includegraphics[width=6.0cm]{c_100_110mig_01_albe.ps} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + C \hkl<1 0 0> interstitial migration along \hkl<1 1 0> + in c-Si (Albe) + } + + \footnotesize + + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_50.eps} + \begin{center} + 50 \% + \end{center} + \end{minipage} + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_80.eps} + \begin{center} + 80 \% + \end{center} + \end{minipage} + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_90.eps} + \begin{center} + 90 \% + \end{center} + \end{minipage} + \begin{minipage}{3.2cm} + \includegraphics[width=3cm]{c_100_mig/fixmig_99.eps} + \begin{center} + 100 \% + \end{center} + \end{minipage} + + Open questions ... + \begin{enumerate} + \item Why is the expected configuration not obtained? + \item How to find a migration path preceding to the expected configuration? + \end{enumerate} + + Answers ... + \begin{enumerate} + \item Simple: it is not the right migration path! \begin{itemize} - \item Again, no difference in tetrahedron method and Gauss smearing - \item ... + \item (Surrounding) atoms settle into a local minimum configuration + \item A possibly existing more favorable configuration is not achieved + \end{itemize} + \item \begin{itemize} + \item Search global minimum in each step (by simulated annealing)\\ + {\color{red}But:} + Loss of the correct energy needed for migration + \item Smaller displacements\\ + A more favorable configuration might be achieved + possibly preceding to the expected configuration \end{itemize} + \end{enumerate} + + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + C \hkl<1 0 0> interstitial migration along \hkl<1 1 0> + in c-Si (Albe)\\ + } + + Displacement step size decreased to + $\frac{1}{100} (\Delta x,\Delta y)$\\[0.2cm] + + \begin{minipage}{7.5cm} + Result: (Video \href{../video/c_in_si_smig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_smig_albe.avi}{$\rhd_{\text{remote url}}$}) + \begin{itemize} + \item Expected final configuration not obtained + \item Bonds to neighboured silicon atoms persist + \item C and neighboured Si atoms move along the direction of displacement + \item Even the bond to the lower left silicon atom persists + \end{itemize} + {\color{red} + Obviously: overestimated bond strength + } + \end{minipage} + \begin{minipage}{5cm} + \includegraphics[width=6cm]{c_100_110smig_01_albe.ps} + \end{minipage}\\[0.4cm] + New approach to find the migration path:\\ + {\color{blue} + Place interstitial carbon atom at the respective coordinates + into a perfect c-Si matrix! + } + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + C \hkl<1 0 0> interstitial migration along \hkl<1 1 0> + in c-Si (Albe) + } + + {\color{blue}New approach:}\\ + Place interstitial carbon atom at the respective coordinates + into a perfect c-Si matrix!\\ + {\color{blue}Problem:}\\ + Too high forces due to the small distance of the C atom to the Si + atom sharing the lattice site.\\ + {\color{blue}Solution:} + \begin{itemize} + \item {\color{red}Slightly displace the Si atom} + (Video \href{../video/c_in_si_pmig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pmig_albe.avi}{$\rhd_{\text{remote url}}$}) + \item {\color{green}Immediately quench the system} + (Video \href{../video/c_in_si_pqmig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pqmig_albe.avi}{$\rhd_{\text{remote url}}$}) \end{itemize} - {\LARGE\bf\color{red} - More simulations running ... + \begin{minipage}{6.5cm} + \includegraphics[width=6cm]{c_100_110pqmig_01_albe.ps} + \end{minipage} + \begin{minipage}{6cm} + \begin{itemize} + \item Jump in energy corresponds to the abrupt + structural change (as seen in the videos) + \item Due to the abrupt changes in structure and energy + this is {\color{red}not} the correct migration path and energy!?! + \end{itemize} + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + C \hkl<1 0 0> interstitial migration along \hkl<1 1 0> in c-Si (VASP) } + \small + + {\color{blue}Method:} + \begin{itemize} + \item Place interstitial carbon atom at the respective coordinates + into perfect c-Si + \item \hkl<1 1 0> direction fixed for the C atom + \item $4\times 4\times 3$ Type 1, $198+1$ atoms + \item Atoms with $x=0$ or $y=0$ or $z=0$ fixed + \end{itemize} + {\color{blue}Results:} + (Video \href{../video/c_in_si_pmig_vasp.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pmig_vasp.avi}{$\rhd_{\text{remote url}}$})\\ + \begin{minipage}{7cm} + \includegraphics[width=7cm]{c_100_110pmig_01_vasp.ps} + \end{minipage} + \begin{minipage}{5.5cm} + \begin{itemize} + \item Characteristics nearly equal to classical calulations + \item Approximately half of the classical energy + needed for migration + \end{itemize} + \end{minipage} + \end{slide} \begin{slide} - {\large\bf - Review (so far) ...\\ + {\large\bf\boldmath + C \hkl<1 0 0> interstitial migration along \hkl<1 1 0> in c-Si (VASP) } - Symmetry (in defect simulations) + \small - {\LARGE\bf\color{red} - Simulations running ... + {\color{blue}Method:} + \begin{itemize} + \item Continue with atomic positions of the last run + \item Displace the C atom in \hkl<1 1 0> direction + \item \hkl<1 1 0> direction fixed for the C atom + \item $4\times 4\times 3$ Type 1, $198+1$ atoms + \item Atoms with $x=0$ or $y=0$ or $z=0$ fixed + \end{itemize} + {\color{blue}Results:} + (Video \href{../video/c_in_si_smig_vasp.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_smig_vasp.avi}{$\rhd_{\text{remote url}}$})\\ + \includegraphics[width=7cm]{c_100_110mig_01_vasp.ps} + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + Again: C \hkl<1 0 0> interstitial migration } + \small + + {\color{blue}The applied methods:} + \begin{enumerate} + \item Method + \begin{itemize} + \item Start in relaxed \hkl<1 0 0> interstitial configuration + \item Displace C atom along \hkl<1 1 0> direction + \item Relaxation (Berendsen thermostat) + \item Continue with configuration of the last run + \end{itemize} + \item Method + \begin{itemize} + \item Place interstitial carbon at the respective coordinates + into the perfect Si matrix + \item Quench the system + \end{itemize} + \end{enumerate} + {\color{blue}In both methods:} + \begin{itemize} + \item Fixed border atoms + \item Applied \hkl<1 1 0> constraint for the C atom + \end{itemize} + {\color{red}Pitfalls} and {\color{green}refinements}: + \begin{itemize} + \item {\color{red}Fixed border atoms} $\rightarrow$ + Relaxation of stress not possible\\ + $\Rightarrow$ + {\color{green}Fix only one Si atom} (the one furthermost to the defect) + \item {\color{red}\hkl<1 1 0> constraint not sufficient}\\ + $\Rightarrow$ {\color{green}Apply 11x constraint} + (connecting line of initial and final C positions) + \end{itemize} + \end{slide} \begin{slide} - {\large\bf - Review (so far) ...\\ + {\large\bf\boldmath + Again: C \hkl<1 0 0> interstitial migration (Albe) } - Real space projection + Constraint applied by modifying the Velocity Verlet algorithm + + {\color{blue}Results:} + (Video \href{../video/c_in_si_fmig_albe.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_fmig_albe.avi}{$\rhd_{\text{remote url}}$})\\ + \begin{minipage}{6.3cm} + \includegraphics[width=6cm]{c_100_110fmig_01_albe.ps} + \end{minipage} + \begin{minipage}{6cm} + \begin{center} + Again there are jumps in energy corresponding to abrupt + structural changes as seen in the video + \end{center} + \end{minipage} + \begin{itemize} + \item Expected final configuration not obtained + \item Bonds to neighboured silicon atoms persist + \item C and neighboured Si atoms move along the direction of displacement + \item Even the bond to the lower left silicon atom persists + \end{itemize} \end{slide} \begin{slide} - {\large\bf - Review (so far) ...\\ + {\large\bf\boldmath + Again: C \hkl<1 0 0> interstitial migration (VASP) } - Energy cut-off + Transformation for the Type 2 supercell + + \small + + \begin{minipage}[t]{4.2cm} + \underline{Starting configuration}\\ + \includegraphics[width=3cm]{c_100_mig_vasp/start.eps} + \end{minipage} + \begin{minipage}[t]{4.0cm} + \vspace*{1.0cm} + $\Delta x=1.367\text{ \AA}$\\ + $\Delta y=1.367\text{ \AA}$\\ + $\Delta z=0.787\text{ \AA}$\\ + \end{minipage} + \begin{minipage}[t]{4.2cm} + \underline{{\bf Expected} final configuration}\\ + \includegraphics[width=3cm]{c_100_mig_vasp/final.eps}\\ + \end{minipage} + \begin{minipage}{6.2cm} + Rotation angles: + \[ + \alpha=45^{\circ} + \textrm{ , } + \beta=\arctan\frac{\Delta z}{\sqrt{2}\Delta x}=22.165^{\circ} + \] + \end{minipage} + \begin{minipage}{6.2cm} + Length of migration path: + \[ + l=\sqrt{\Delta x^2+\Delta y^2+\Delta z^2}=2.087\text{ \AA} + \] + \end{minipage}\\[0.3cm] + Transformation of basis: + \[ + T=ABA^{-1}A=AB \textrm{, mit } + A=\left(\begin{array}{ccc} + \cos\alpha & -\sin\alpha & 0\\ + \sin\alpha & \cos\alpha & 0\\ + 0 & 0 & 1 + \end{array}\right) + \textrm{, } + B=\left(\begin{array}{ccc} + 1 & 0 & 0\\ + 0 & \cos\beta & \sin\beta \\ + 0 & -\sin\beta & \cos\beta + \end{array}\right) + \] + Atom coordinates transformed by: $T^{-1}=B^{-1}A^{-1}$ + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + Again: C \hkl<1 0 0> interstitial migration\\ + } + + {\color{blue}Reminder:}\\ + Transformation needed since in VASP constraints can only be applied to + the basis vectors!\\ + {\color{red}Problem:} (stupid me!)\\ + Transformation of supercell 'destroys' the correct periodicity!\\ + {\color{green}Solution:}\\ + Find a supercell with one basis vector forming the correct constraint\\ + {\color{red}Problem:}\\ + Hard to find a supercell for the $22.165^{\circ}$ rotation\\ + + Another method to {\color{blue}\underline{estimate}} the migration energy: + \begin{itemize} + \item Assume an intermediate saddle point configuration during migration + \item Determine the energy of the saddle point configuration + \item Substract the saddle point configuration energy by + the energy of the initial (final) defect configuration + \end{itemize} + + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + The C \hkl<1 0 0> defect configuration + } + + Needed so often for input configurations ...\\[0.8cm] + \begin{minipage}{7.0cm} + \includegraphics[width=6.5cm]{100-c-si-db_light.eps}\\ + Qualitative {\color{red}and} quantitative {\color{red}difference}! + \end{minipage} + \begin{minipage}{5.5cm} + \scriptsize + \begin{center} + \begin{tabular}{|l|l|l|} + \hline + & a & b \\ + \hline + \underline{VASP} & & \\ + fractional & 0.1969 & 0.1211 \\ + in \AA & 1.08 & 0.66 \\ + \hline + \underline{Albe} & & \\ + fractional & 0.1547 & 0.1676 \\ + in \AA & 0.84 & 0.91 \\ + \hline + \end{tabular}\\[0.2cm] + {\scriptsize\underline{PC (Vasp)}} + \includegraphics[width=6.1cm]{c_100_pc_vasp.ps} + \end{center} + \end{minipage} + + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + Again: C \hkl<1 0 0> interstitial migration (VASP) + } + + $\hkl<0 0 -1> \rightarrow \hkl<0 0 1>$ migration + ($3\times 3\times 3$ Type 2): + + \small + + \begin{minipage}[t]{4.1cm} + \underline{Starting configuration}\\ + \includegraphics[height=3.2cm]{c_100_mig_vasp/start.eps} + \begin{center} + $E_{\text{f}}=3.15 \text{ eV}$ + \end{center} + \end{minipage} + \begin{minipage}[t]{4.1cm} + \underline{Intermediate configuration}\\ + \includegraphics[height=3.2cm]{c_100_mig_vasp/00-1_001_im.eps} + \begin{center} + $E_{\text{f}}=4.41 \text{ eV}$ + \end{center} + \end{minipage} + \begin{minipage}[t]{4.1cm} + \underline{Final configuration}\\ + \includegraphics[height=3.2cm]{c_100_mig_vasp/final.eps} + \begin{center} + $E_{\text{f}}=3.17 \text{ eV}$ + \end{center} + \end{minipage}\\[0.4cm] + \[ + \Rightarrow \Delta E_{\text{f}} = E_{\text{mig}} = 1.26 \text{ eV} + \] + Unexpected \& ({\color{red}more} or {\color{orange}less}) fatal: + \begin{itemize} + \renewcommand\labelitemi{{\color{orange}$\bullet$}} + \item Difference in formation energy (0.02 eV) + of the initial and final configuration + \renewcommand\labelitemi{{\color{red}$\bullet$}} + \item Huge discrepancy (0.3 - 0.4 eV) to the migration barrier + of Type 1 (198+1 atoms) calculations + \renewcommand\labelitemi{{\color{black}$\bullet$}} + \end{itemize} + \end{slide} \begin{slide} + {\large\bf\boldmath + Again: C \hkl<1 0 0> interstitial migration (VASP) + } + + $\hkl<0 0 -1> \rightarrow \hkl<0 -1 0>$ migration + ($3\times 3\times 3$ Type 2): + + \small + + \begin{minipage}[t]{4.1cm} + \underline{Starting configuration}\\ + \includegraphics[height=3.2cm]{c_100_mig_vasp/start.eps} + \begin{center} + $E_{\text{f}}=3.154 \text{ eV}$ + \end{center} + \end{minipage} + \begin{minipage}[t]{4.1cm} + \underline{Intermediate configuration}\\ + in progress ... + \begin{center} + $E_{\text{f}}=?.?? \text{ eV}$ + \end{center} + \end{minipage} + \begin{minipage}[t]{4.1cm} + \underline{Final configuration}\\ + \includegraphics[height=3.2cm]{c_100_mig_vasp/0-10.eps} + \begin{center} + $E_{\text{f}}=3.157 \text{ eV}$ + \end{center} + \end{minipage}\\[0.4cm] + \[ + \Rightarrow \Delta E_{\text{f}} = E_{\text{mig}} = ?.?? \text{ eV} + \] + + \vspace*{0.5cm} {\large\bf - Review (so far) ...\\ + Intermediate configuration {\color{red}not found} by now! + } + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + C in Si interstitial configurations (VASP) + } + + Check of Kohn-Sham eigenvalues\\ + + \small + + \begin{minipage}{6cm} + \hkl<1 0 0> interstitial\\ + \end{minipage} + \begin{minipage}{6cm} + Saddle point configuration\\ + \end{minipage} + \underline{$4\times 4\times 3$ Type 1 - fixed border atoms}\\ + \begin{minipage}{6cm} +385: 4.8567 - 2.00000\\ +386: 4.9510 - 2.00000\\ +387: 5.3437 - 0.00000\\ +388: 5.4930 - 0.00000 + \end{minipage} + \begin{minipage}{6cm} +385: 4.8694 - 2.00000\\ +386: {\color{red}4.9917} - 1.92603\\ +387: {\color{red}5.1181} - 0.07397\\ +388: 5.4541 - 0.00000 + \end{minipage}\\[0.2cm] + \underline{$4\times 4\times 3$ Type 1 - no constraints}\\ + \begin{minipage}{6cm} +385: 4.8586 - 2.00000\\ +386: 4.9458 - 2.00000\\ +387: 5.3358 - 0.00000\\ +388: 5.4915 - 0.00000 + \end{minipage} + \begin{minipage}{6cm} +385: 4.8693 - 2.00000\\ +386: {\color{red}4.9879} - 1.92065\\ +387: {\color{red}5.1120} - 0.07935\\ +388: 5.4544 - 0.00000 + \end{minipage}\\[0.2cm] + \underline{$3\times 3\times 3$ Type 2 - no constraints}\\ + \begin{minipage}{6cm} +433: 4.8054 - 2.00000\\ +434: 4.9027 - 2.00000\\ +435: 5.2543 - 0.00000\\ +436: 5.5718 - 0.00000 + \end{minipage} + \begin{minipage}{6cm} +433: 4.8160 - 2.00000\\ +434: {\color{green}5.0109} - 1.00264\\ +435: {\color{green}5.0111} - 0.99736\\ +436: 5.5364 - 0.00000 + \end{minipage} + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + Once again: C \hkl<1 0 0> interstitial migration (VASP) + } + + Method: + \begin{itemize} + \item Start in fully relaxed (assumed) saddle point configuration + \item Move towards \hkl<1 0 0> configuration using updated values + for $\Delta x$, $\Delta y$ and $\Delta z$ + \item \hkl<1 1 0> constraints applied, 1 Si atom fixed + \item $4\times 4\times 3$ Type 1 supercell + \end{itemize} + + Results: + + \begin{minipage}{6.2cm} + \includegraphics[width=6.0cm]{c_100_110sp-i_vasp.ps} + \end{minipage} + \begin{minipage}{6.2cm} + \includegraphics[width=6.0cm]{c_100_110sp-i_rc_vasp.ps} + \end{minipage} + + Reaction coordinate: + $r_{i+1}=r_i+\sum_{\text{atoms j}} \left| r_{j,i+1}-r_{j,i} \right|$ + +\end{slide} + +\begin{slide} + + {\large\bf\boldmath + Investigation of the migration path along \hkl<1 1 0> (VASP) } - Size and type of supercell + \small + + \underline{Minimum:}\\ + \begin{minipage}{4cm} + \includegraphics[width=3.5cm]{c_100_mig_vasp/110_c-si_split.eps} + \end{minipage} + \begin{minipage}{8cm} + \begin{itemize} + \item Starting conf: 35 \% displacement results + \item \hkl<1 1 0> constraint disabled + \end{itemize} + \begin{center} + $\Downarrow$ + \end{center} + \begin{itemize} + \item C-Si \hkl<1 1 0> split interstitial + \item Stable configuration + \item $E_{\text{f}}=4.13\text{ eV}$ + \end{itemize} + \end{minipage}\\[0.1cm] + + \underline{Maximum:}\\ + \begin{minipage}{6cm} + \begin{center} + \includegraphics[width=2.3cm]{c_100_mig_vasp/100-110_01.eps} + \includegraphics[width=2.3cm]{c_100_mig_vasp/100-110_02.eps}\\ + 20 \% $\rightarrow$ 25 \%\\ + Breaking of Si-C bond + \end{center} + \end{minipage} + \begin{minipage}{6cm} + \includegraphics[width=6.2cm]{c_100_110sp-i_upd_vasp.ps} + \end{minipage} \end{slide} \begin{slide} {\large\bf - Not answered (so far) ...\\ + Molecular dynamics simulations (VASP) } -\vspace{1.5cm} + 2 C atoms in $2\times 2\times 2$ Type 2 supercell at $450\,^{\circ}\text{C}$ - \LARGE - \bf - \color{blue} + \small + \begin{minipage}{7.6cm} + Radial distribution\\ + \includegraphics[width=7.6cm]{md_02c_2222si_pc.ps} + \end{minipage} + \begin{minipage}{5.0cm} \begin{center} - Continue\\ - with\\ - US LDA? + PC average from\\ + $t_1=50$ ps to $t_2=50.93$ ps \end{center} + \end{minipage} + Diffusion: + \begin{itemize} + \item $<(x(t)-x(0))^2>$ hard to determine due to missing info of + boundary crossings + \item No jumps recognized in the + Video \href{../video/md_02c_2222si_vasp.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/md_02c_2222si_vasp.avi}{$\rhd_{\text{remote url}}$} + \end{itemize} -\vspace{1.5cm} +\end{slide} + +\begin{slide} + + {\large\bf + Molecular dynamics simulations (VASP) + } + + 10 C atoms in $3\times 3\times 3$ Type 2 supercell at $450\,^{\circ}\text{C}$ + + \small + + \begin{minipage}{7.2cm} + Radial distribution (PC averaged over 1 ps)\\ + \includegraphics[width=7.0cm]{md_10c_2333si_pc_vasp.ps} + \end{minipage} + \begin{minipage}{5.0cm} + \includegraphics[width=6.0cm]{md_10c_2333si_pcc_vasp.ps} + \end{minipage} + Diffusion: + (Video \href{../video/md_10c_2333si_vasp.avi}{$\rhd_{\text{local}}$ } $|$ + \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/md_10c_2333si_vasp.avi}{$\rhd_{\text{remote url}}$}) + \begin{itemize} + \item $<(x(t)-x(0))^2>$ hard to determine due to missing info of + boundary crossings + \item Agglomeration of C? (Video) + \end{itemize} + +\end{slide} + +\begin{slide} + + {\large\bf + Density Functional Theory + } + + Hohenberg-Kohn theorem + + \small + \end{slide}