X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=posic%2Fthesis%2Fbasics.tex;h=7d61ebedc2b33f93023d851422d3d8f923fdd2b1;hp=6d292e868fa5eef2540701fb30e8ccd7b841f8eb;hb=b5e3cea078aea01962b72e32f6c66f29fb6e0494;hpb=76f9f198ef011e6a730e83d95fa3a173ccd3aa7b diff --git a/posic/thesis/basics.tex b/posic/thesis/basics.tex index 6d292e8..7d61ebe 100644 --- a/posic/thesis/basics.tex +++ b/posic/thesis/basics.tex @@ -172,7 +172,8 @@ It is of the form: \begin{eqnarray} b_{ij} & = & \chi_{ij} (1 + \beta_i^{n_i} \zeta^{n_i}_{ij})^{-1/2n_i} \\ \zeta_{ij} & = & \sum_{k \ne i,j} f_C (r_{ik}) \omega_{ik} g(\theta_{ijk}) \\ -g(\theta_{ijk}) & = & 1 + c_i^2/d_i^2 - c_i^2/[d_i^2 + (h_i - \cos \theta_{ijk})^2] +g(\theta_{ijk}) & = & 1 + c_i^2/d_i^2 - c_i^2/[d_i^2 + (h_i - \cos \theta_{ijk})^2] \\ +b_{ij} & = & \chi_{ij} \Big( 1 + \beta_i^{n_i} \Big[ \sum_{k \ne i,j} f_C (r_{ik}) \omega_{ik} \big[ 1 + c_i^2/d_i^2 - c_i^2/[d_i^2 + (h_i - \cos \theta_{ijk})^2] \big] \Big] \Big)^{-1/2n_i} \end{eqnarray} where $\theta_{ijk}$ is the bond angle between bonds $ij$ and $ik$. This is illustrated in Figure \ref{img:tersoff_angle}. @@ -183,37 +184,48 @@ In order to calculate the forces the derivation of the potential with respect to This is gradually done in the following. The $n$th component of the force acting on atom $i$ is \begin{eqnarray} -F_n^i & = & - \frac{\partial}{\partial x_n} \sum_{j \neq i} V_{ij} \nonumber\\ +F_n^i & = & - \frac{\partial}{\partial x_n^i} \sum_{j \neq i} V_{ij} \nonumber\\ & = & \sum_{j \neq i} \Big( \partial_{x_n^i} f_C(r_{ij}) \big[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \big] + \nonumber\\ -& & + f_C(r_{ij}) \big[ \partial_{x_n^i} f_R(r_{ij}) + b_{ij} \partial_{x_n^i} f_A(r_{ij}) + f_A(r_{ij}) \partial_{x_n^i} b_{ij} \big] \Big) +& & + f_C(r_{ij}) \big[ \partial_{x_n^i} f_R(r_{ij}) + b_{ij} \partial_{x_n^i} f_A(r_{ij}) + f_A(r_{ij}) \partial_{x_n^i} b_{ij} \big] \Big) \textrm{ .} +\end{eqnarray} +For the implementation it is helpful to seperate the two and three body terms. +\begin{eqnarray} +F_n^i & = & \sum_{j \neq i} \Big( f_R(r_{ij}) \partial_{x_n^i} f_C(r_{ij}) + f_C(r_{ij}) \partial_{x_n^i} f_R(r_{ij}) \Big) + \nonumber\\ +& + & \sum_{j \neq i} \Big( \partial_{x_n^i} f_C(r_{ij}) b_{ij} f_A(r_{ij}) + f_C(r_{ij}) \big[ b_{ij} \partial_{x_n^i} f_A(r_{ij}) + f_A(r_{ij}) \partial_{x_n^i} b_{ij} \big] \Big) \end{eqnarray} The cutoff function $f_C$ derivated with repect to $x^i_n$ is \begin{equation} \partial_{x^i_n} f_C(r_{ij}) = - \frac{1}{2} \sin \Big( \pi (r_{ij} - R_{ij}) / (S_{ij} - R_{ij}) \Big) \frac{\pi x^i_n}{(S_{ij} - R_{ij}) r_{ij}} + - \frac{1}{2} \sin \Big( \pi (r_{ij} - R_{ij}) / (S_{ij} - R_{ij}) \Big) \frac{\pi (x^i_n - x^j_n)}{(S_{ij} - R_{ij}) r_{ij}} \label{eq:d_cutoff} \end{equation} for $R_{ij} < r_{ij} < S_{ij}$ and otherwise zero. The derivations of the repulsive and attractive part are: \begin{eqnarray} -\partial_{x_n^i} f_R(r_{ij}) & = & - \lambda_{ij} A_{ij} \exp (-\lambda_{ij} r_{ij})\\ -\partial_{x_n^i} f_A(r_{ij}) & = & \mu_{ij} B_{ij} \exp (-\mu_{ij} r_{ij}) \textrm{ .} -\end{eqnarray} -The angle $\theta_{ijk}$ can be expressed by the atom distances with the law of cosines: -\begin{eqnarray} -\theta_{ijk} & = & \arccos \Big( (r_{ij}^2 + r_{ik}^2 - r_{jk}^2)/(2 r_{ij} r_{ik}) \Big) \\ -\partial_{x^i_n} \theta_{ijk} & = & -\frac{-1}{\sqrt{1 - ((r_{ik}^2+r_{ij}^2-r_{jk}^2)/2r_{ik}r_{ij})^2}} \times \nonumber\\ - & & \times \Big( \frac{4 r_{ik}r_{ij} (2 x^i_n - x^k_n - x^j_n) + 2(x^j_n - x^i_n)\frac{r_{ik}}{r_{ij}} + 2(x^k_n - x^i_n)\frac{r_{ij}}{r_{ik}} }{4 r^2_{ik} r^2_{ij}}\Big) \label{eq:d_theta} +\partial_{x_n^i} f_R(r_{ij}) & = & - \lambda_{ij} \frac{x_n^i - x_n^j}{r_{ij}} A_{ij} \exp (-\lambda_{ij} r_{ij})\\ +\partial_{x_n^i} f_A(r_{ij}) & = & \mu_{ij} \frac{x_n^i - x_n^j}{r_{ij}} B_{ij} \exp (-\mu_{ij} r_{ij}) \textrm{ .} \end{eqnarray} -Using the expressions \eqref{eq:d_cutoff} and \eqref{eq:d_theta} the derivation of $b_{ij}$ with respect to $x^i_n$ can be written as: +The cosine of the angle $\theta_{ijk}$ can be expressed by the atom distances with the law of cosines +\begin{equation} +\cos \theta_{ijk} = \Big( (r_{ij}^2 + r_{ik}^2 - r_{jk}^2)/(2 r_{ij} r_{ik}) \Big) +\end{equation} +or by the definition of the scalar product +\begin{equation} +\cos \theta_{ijk} = \frac{\vec{r}_{ij} \vec{r}_{ik}}{r_{ij} r_{ik}} \textrm{ .} +\end{equation} +The derivation of the angle $\theta_{ijk}$ with respect to $x^i_n$ is given by +\begin{equation} +\partial_{x^i_n} \cos \theta_{ijk} = \Big( r_{ik} r_{ij} - \vec{r}_{ij} \vec{r}_{ik} \frac{r_{ik}}{r_{ij}} \Big) (x_n^i - x_n^j) + \Big( r_{ik} r_{ij} - \vec{r}_{ij} \vec{r}_{ik} \frac{r_{ij}}{r_{ik}} \Big) (x_n^i - x_n^k) +\label{eq:d_costheta} +\end{equation} + +Using the expressions \eqref{eq:d_cutoff} and \eqref{eq:d_costheta} the derivation of $b_{ij}$ with respect to $x^i_n$ can be written as: \begin{eqnarray} \partial_{x^i_n} b_{ij} & = & -- \frac{1}{2n_i} \chi_{ij} \Bigg( 1 + \beta_i^{n_i} \Bigg[ \sum_{k \ne i,j} \bigg( f_C(r_{ij}) \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \bigg)^{n_i} \Bigg] \Bigg)^{-\frac{1}{2n_i} - 1} \times \nonumber\\ -&& \times n_i \beta_i^{n_i} \Bigg[ \sum_{k \ne i,j} f_C(r_{ik}) \omega_{ik} \Big( 1 \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \Bigg]^{n_i -1} \times \nonumber\\ -&& \times \sum_{k \ne i,j} \Bigg( \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \partial_{x^i_n} f_C(r_{ik}) + \nonumber\\ -&& + f_C(r_{ik}) \omega_{ik} (-1) \frac{c_i^2}{(d_i^2 + (h_i - \cos \theta_{ijk})^2)^2} \times \nonumber\\ -&& \times 2 \Big( h_i - \cos \theta_{ijk} \Big) \sin \theta_{ijk} \partial_{x^i_n} \theta_{ijk} \Bigg) +- \frac{1}{2n_i} \chi_{ij} \Bigg( 1 + \beta_i^{n_i} \Bigg[ \sum_{k \ne i,j} \bigg( f_C(r_{ik}) \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \bigg)^{n_i} \Bigg] \Bigg)^{-\frac{1}{2n_i} - 1} \times \nonumber\\ +&& \times n_i \beta_i^{n_i} \sum_{k \ne i,j} \Bigg( \Bigg[ f_C(r_{ik}) \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \Bigg]^{n_i -1} \times \nonumber\\ +&& \times \Bigg[ \omega_{ik} \Big( 1 + \frac{c_i^2}{d_i^2} - \frac{c_i^2}{d_i^2 + (h_i - \cos \theta_{ijk})^2} \Big) \partial_{x^i_n} f_C(r_{ik}) - \nonumber\\ +&& - f_C(r_{ik}) \omega_{ik} \frac{2 c_i^2 (h_i - \cos \theta_{ijk})}{(d_i^2 + (h_i - \cos \theta_{ijk})^2)^2} \partial_{x^i_n} \cos \theta_{ijk} \Bigg] \end{eqnarray}