X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=solid_state_physics%2Ftutorial%2F1_05s.tex;h=d33f033a35945a148a78cdd041f4c2cac0dca391;hp=39d9bdd31b41bce13a2a8869190958fe7492bc03;hb=183bd2b78445842ee859e2f10f8ab9dc84cf2776;hpb=74d9127cb8e2552bc28f766c532ba1a7accb4270 diff --git a/solid_state_physics/tutorial/1_05s.tex b/solid_state_physics/tutorial/1_05s.tex index 39d9bdd..d33f033 100644 --- a/solid_state_physics/tutorial/1_05s.tex +++ b/solid_state_physics/tutorial/1_05s.tex @@ -55,12 +55,10 @@ \approx 4\pi k^2dk$ \end{itemize} $\Rightarrow dZ'=\frac{\frac{1}{8}4\pi k^2dk}{(\pi/L)^3}$ - \item Express $dk$ and $k$ by $dE$ and $E$ and insert it into $dZ$: - \begin{itemize} - \item $\frac{dE}{dk}=\frac{\hbar^2}{m}k \rightarrow - dk=\frac{m}{\hbar^2k}dE$ - \item $k=\frac{\sqrt{2m}}{\hbar^2}\sqrt{E}$ - \end{itemize} + \item Express $dk$ and $k$ by $dE$ and $E$ and insert it into $dZ$:\\ + $\frac{dE}{dk}=\frac{\hbar^2}{m}k \rightarrow + dk=\frac{m}{\hbar^2k}dE$\\ + $k=\frac{\sqrt{2m}}{\hbar^2}\sqrt{E}$\\ $\Rightarrow dZ'=\frac{4\pi k^2m}{(\pi/L)^3\hbar^2k} dE= \frac{4\pi\frac{\sqrt{2m}}{\hbar}\sqrt{E}m}{8(\pi/L)^3\hbar^2}dE =\frac{(2m)^{3/2}L^3}{4\pi^2\hbar^3}\sqrt{E}dE$\\ @@ -75,22 +73,41 @@ \item Curvature of the band:\\ $\frac{d^2E}{dk^2}=\frac{d^2}{dk^2}\frac{\hbar^2k^2}{2m_{eff}} =\frac{\hbar^2}{m_{eff}}$ - \item + \item \begin{minipage}{0.5\textwidth} + $m_n=m_p$:\\ + \includegraphics[width=5cm,angle=-90]{dos_is_1.eps} + \includegraphics[width=5cm,angle=-90]{fermi_1.eps} + \includegraphics[width=5cm,angle=-90]{ccc_1.eps} + \end{minipage} + \begin{minipage}{0.5\textwidth} + $m_n \ne m_p$:\\ + \includegraphics[width=5cm,angle=-90]{dos_is_2.eps} + \includegraphics[width=5cm,angle=-90]{fermi_2.eps} + \includegraphics[width=5cm,angle=-90]{ccc_2.eps} + \end{minipage} \end{enumerate} -\section{'Density of state mass' of electrons and holes in silicon} +\section{'Density of state mass' of holes in silicon} \begin{enumerate} \item $D_v(E)=\frac{1}{2\pi^2}(\frac{2}{\hbar^2})^{3/2} (m_{pl}^{3/2}+m_{ph}^{3/2})(E_v-E)^{1/2}$ - \item + \item $D_v(E)=\frac{1}{2\pi^2}(\frac{2m_p}{\hbar^2})^{3/2} + (E_v-E)^{1/2}$, with + $m_p=(m_{vh}^{3/2}+m_{vl}^{3/2})^{2/3}$\\ + $m_{vh}=0.49 \, m_e$, $m_{vl}=0.16 \, m_e$ + $\Rightarrow$ + $m_p=\ldots=0.55 \, m_e$ \end{enumerate} -\begin{center} -{\Large\bf - Merry Christmas\\ - \&\\ - Happy New Year!} -\end{center} +Remarks: +\begin{itemize} + \item Operand for calculating the density of states using the + standard density of states expression near the band edge. + \item No such charge carriers which have the effective mass $m_p$ + exist in silicon. + Concerning transport properties the effective masses have to be + treated separately. +\end{itemize} \end{document}