X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=solid_state_physics%2Ftutorial%2F2_01.tex;h=cddf85b0739c828b74d058088fab7396a0e83cca;hp=2aa6a6df0b8c7775cf0dbaab79c2bc6db2713470;hb=183bd2b78445842ee859e2f10f8ab9dc84cf2776;hpb=fff954979dc1aa60eec2d373637dda7a1e64db70 diff --git a/solid_state_physics/tutorial/2_01.tex b/solid_state_physics/tutorial/2_01.tex index 2aa6a6d..cddf85b 100644 --- a/solid_state_physics/tutorial/2_01.tex +++ b/solid_state_physics/tutorial/2_01.tex @@ -96,7 +96,7 @@ atom or ion. \begin{enumerate} \item Write down the additional terms $H_{kin}'$ of the kinetic part of the Hamiltonian. - \item Chose a reasonable vector potential ${\bf A}$ to get a constant + \item Choose a reasonable vector potential ${\bf A}$ to get a constant magnetic field ${\bf B}$ in $z$-direction. \item Rewrite the Hamiltonian using the definition of the angular momentum operator @@ -104,7 +104,7 @@ atom or ion. \item Calculate the magnetic suscebtibility in a state $\phi$. What term is responsible for the diamagnetic contribution? {\bf Hint:} The magnetic suscebtibility is defined as - $\chi=-\frac{1}{V}\frac{\partial^2 E}{\partial B^2}$. + $\chi=-\frac{1}{V}\mu_0\frac{\partial^2 E}{\partial B^2}$. \item Assuming a spherically symmetric charge distribution the equality $<\phi|x^2|\phi>=<\phi|y^2|\phi>=\frac{1}{3}<\phi|r^2|\phi>$ is valid. Rewrite the diamagnetic part of the suscebtibility