X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=solid_state_physics%2Ftutorial%2F2_02.tex;fp=solid_state_physics%2Ftutorial%2F2_02.tex;h=b9b5c5a93af222bb4722c4d5382faceb861b7866;hp=ecafd2a925bb40885c7b046efb386fa4aee3e9f3;hb=e53bf68c01b1f2408f15dcc155ca0715fdf7aa20;hpb=33ca95b143e3c667847d4edb2e0ffdd0ff4cd8c9 diff --git a/solid_state_physics/tutorial/2_02.tex b/solid_state_physics/tutorial/2_02.tex index ecafd2a..b9b5c5a 100644 --- a/solid_state_physics/tutorial/2_02.tex +++ b/solid_state_physics/tutorial/2_02.tex @@ -58,7 +58,8 @@ and $\lambda$ is the London penetration depth. {\bf Hint:} Use the relation $I_c=\int_0^R dr \int_0^{2\pi} d\phi \, j_c(r) r$ and integration by parts. - \item Calculate $j_c(R,T=0K)$ for a wire of Sn with a radius of 1 mm at $T=0K$. + \item Calculate $j_c(R,T=0K)$ for a wire of Sn with a diameter of 1 mm + at $T=0K$. The critical current and penetration depth at $T=0K$ are $I_c=75\, A$ and $\lambda =300\cdot 10^{-10}\, m$. \end{enumerate}