X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=solid_state_physics%2Ftutorial%2F2_02s.tex;fp=solid_state_physics%2Ftutorial%2F2_02s.tex;h=8c121964d7286c2995d13b8143baeb717a7c366e;hp=0000000000000000000000000000000000000000;hb=578f4e5ba230a27e01aca6d6723a7099c18843a3;hpb=0e9c3401897589d34cf2caea887bccc8190eecfd diff --git a/solid_state_physics/tutorial/2_02s.tex b/solid_state_physics/tutorial/2_02s.tex new file mode 100644 index 0000000..8c12196 --- /dev/null +++ b/solid_state_physics/tutorial/2_02s.tex @@ -0,0 +1,115 @@ +\pdfoutput=0 +\documentclass[a4paper,11pt]{article} +\usepackage[activate]{pdfcprot} +\usepackage{verbatim} +\usepackage{a4} +\usepackage{a4wide} +\usepackage[german]{babel} +\usepackage[latin1]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{amsmath} +\usepackage{ae} +\usepackage{aecompl} +\usepackage[dvips]{graphicx} +\graphicspath{{./img/}} +\usepackage{color} +\usepackage{pstricks} +\usepackage{pst-node} +\usepackage{rotating} + +\setlength{\headheight}{0mm} \setlength{\headsep}{0mm} +\setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm} +\setlength{\oddsidemargin}{-10mm} +\setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm} +\setlength{\textheight}{26cm} \setlength{\headsep}{0cm} + +\renewcommand{\labelenumi}{(\alph{enumi})} +\renewcommand{\labelenumii}{\arabic{enumii})} +\renewcommand{\labelenumiii}{\roman{enumiii})} + +\begin{document} + +% header +\begin{center} + {\LARGE {\bf Materials Physics II}\\} + \vspace{8pt} + Prof. B. Stritzker\\ + SS 2008\\ + \vspace{8pt} + {\Large\bf Tutorial 2 - proposed solutions} +\end{center} + +\section{Critical current in the surface region of a type 1 superconductor} +\[ + j_s(r)=j_s(R)\exp\left(\frac{-(R-r)}{\lambda}\right) +\] +$R$: radius of the wire, $r$: distance from the cylinder axis, +and $\lambda$: London penetration depth. + +\begin{enumerate} + \item $I_c=\int_0^R dr \int_0^{2\pi} d\phi \, j_c(r) r$\\ + $\Rightarrow I_c=\int_0^R dr \, 2\pi j_c(r) r + = j_c(R)2\pi \int_0^R dr \, r \exp(-(R-r)/\lambda) + = j_c(R)2\pi \exp(-R/\lambda) \int_0^R dr \, r \exp(r/\lambda)$ + $x=\frac{r}{\lambda} \rightarrow \frac{dx}{dr}=\frac{1}{\lambda} + \Rightarrow dr=\lambda dx$, $r=\lambda x$ + $\Rightarrow + I_c=j_c(R)2\pi \lambda^2 \exp(-R/\lambda) \int_0^R d(\frac{r}{\lambda}) + \, \frac{r}{\lambda} \exp(\frac{r}{\lambda})$ + Integration by parts: $\int uv' = uv - \int vu'$\\ + $\int xe^x dx = xe^x-\int e^x dx=xe^x-e^x+c=e^x(x-1)+c$\\ + $\Rightarrow + I_c=j_c(R)2\pi \lambda^2\exp(-R/\lambda) \left[ + \exp(\frac{r}{\lambda})(r\lambda-1) \right]_0^R$\\ + $\left[ \exp(\frac{r}{\lambda})(r\lambda-1) \right]_0^R= + \exp(R/\lambda)(R/\lambda-1)-1(-1)$\\ + $\Rightarrow I_c=j_c(R)2\pi \lambda^2 \left[ + \underbrace{\exp(-R/\lambda)\exp(R/\lambda)}_{=1} + (R/\lambda-1)+ + \underbrace{\exp(-R/\lambda)}_{\approx 0 \text{, since } \lambda\ll R} \right]$\\ + $\Rightarrow + I_c\approx j_c(R)2\pi \lambda^2 + \underbrace{(R/\lambda-1)}_{\approx R/\lambda}\approx + j_c(R)2\pi \lambda R$\\ + $\Rightarrow j_c(R)\approx\frac{I_c}{2\pi R\lambda}$ + \item $j_c(R,T=0)=\frac{I_c(T=0)}{2\pi R\lambda(T=0)} + =7.9\cdot 10^7\frac{A}{cm^2}$ +\end{enumerate} + +\section{Penetration of the magnetic field into a type 1 superconductor} +\[ + {\bf B}_s=\mu_0 \left({\bf H}_a + {\bf M}_s\right) +\] +${\bf H}_a$: strength of the applied magnetic field, +${\bf M}_s$: magnetization of the superconductor. + +\begin{enumerate} + \item $\frac{1}{\mu_0} rot {\bf B}_s = + rot {\bf H}_a + rot {\bf M}_s + \stackrel{rot {\bf H}={\bf j}+\frac{d{\bf D}}{dt}}{=} + \underbrace{{\bf j}_a}_{=0} + +{\bf j}_s$\\ + $\Rightarrow + rot {\bf B}_s=\mu_0 {\bf j}_s \qquad | rot ...$\\ + $\Rightarrow + \underbrace{rot rot {\bf B}_s}_{grad \underbrace{div {\bf B}_s}_{=0} + -\Delta {\bf B}_s} + =\mu_0rot {\bf j}_s\stackrel{\text{London II}}{=} + -\frac{\mu_0}{\Lambda}{\bf B}_s$\\ + $\Rightarrow + \Delta {\bf B}_s=\frac{\mu_0}{\Lambda}{\bf B}_s$ + \item ${\bf B}_a=\mu_0 H_a {\bf e}_z$, ${\bf B}_s=B_{s_z}(x) {\bf e}_x$\\ + Diff. equation: $\frac{d^2}{dx^2}B_{s_z}(x)- + \frac{\mu_0}{\Lambda}B_{s_z}(x)=0$\\ + Solution: $B_{s_z}(x)=B_{s_z}(0)\exp(-\frac{x}{\lambda})$, with + $\lambda=\sqrt{\frac{\Lambda}{\mu_0}}$\\ + \includegraphics[width=16cm]{mfsc.ps} + \item $\mu_0 {\bf j}_s=rot{\bf B}_s= + \frac{-\partial B_{s_z}(x)}{\partial x} {\bf e}_y= + \frac{1}{\lambda} B_a \exp(-\frac{x}{\lambda}){\bf e}_y$\\ + $\Rightarrow$ Direction of screening current is ${\bf e}_y$.\\ + $\Rightarrow$ Exponential decay inside the SC.\\ + Interface: ${\bf j}_s(x=0)=\frac{B_a}{\lambda\mu_0} {\bf e}_y$ +\end{enumerate} + +\end{document}