X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=solid_state_physics%2Ftutorial%2F2_03s.tex;h=b7f0f7d8c097b5fce0230953336133d221d7f184;hp=f1b880dbc7054ef003b3d797845221011fbc108d;hb=183bd2b78445842ee859e2f10f8ab9dc84cf2776;hpb=cd77e3b6e7e35332d6fedd7093cc9bdb86f53277 diff --git a/solid_state_physics/tutorial/2_03s.tex b/solid_state_physics/tutorial/2_03s.tex index f1b880d..b7f0f7d 100644 --- a/solid_state_physics/tutorial/2_03s.tex +++ b/solid_state_physics/tutorial/2_03s.tex @@ -119,7 +119,7 @@ \LARGE(\int\prod_{{\bf R}}d\bar{{\bf u}}({\bf R})d\bar{{\bf P}}({\bf R}) \nonumber\\ &&\times \exp\left[ - -\sum\frac{1}{2M}{\bf P}({\bf R})^2 + -\sum\frac{1}{2M}\bar{{\bf P}}({\bf R})^2 -\frac{1}{4}\sum [\bar{u}_{\mu}({\bf R})-\bar{u}_{\mu}({\bf R'})] \Phi_{\mu v}({\bf R}-{\bf R'}) @@ -185,15 +185,17 @@ w=\frac{1}{V}\frac{\sum_i E_i \exp(-\beta E_i)}{\sum_i \exp(-\beta E_i)}. e^{-\beta\hbar\omega_s({\bf k})}(-\hbar\omega_s({\bf k}))} {(1-e^{-\beta\hbar\omega_s({\bf k})})^2}\nonumber\\ &=&-\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k}) - \frac{e^{-\beta\hbar\omega_s({\bf k})}- + \frac{{\color{red}-}e^{-\beta\hbar\omega_s({\bf k})}- \frac{1}{2}(1-e^{-\beta\hbar\omega_s({\bf k})})} {1-e^{-\beta\hbar\omega_s({\bf k})}}\nonumber\\ &=&-\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k}) - \frac{\frac{1}{2}e^{-\beta\hbar\omega_s({\bf k})}-\frac{1}{2}} + \frac{{\color{red}-}\frac{1}{2}e^{-\beta\hbar\omega_s({\bf k})}-\frac{1}{2}} {1-e^{-\beta\hbar\omega_s({\bf k})}} =\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})\frac{1}{2} - \frac{1+e^{\beta\hbar\omega_s({\bf k})}} - {e^{\beta\hbar\omega_s({\bf k})}-1}\nonumber\\ + \frac{e^{-\beta\hbar\omega_s({\bf k})}+1} + {1-e^{-\beta\hbar\omega_s({\bf k})}}\cdot + \frac{e^{\beta\hbar\omega_s({\bf k})}}{e^{\beta\hbar\omega_s({\bf k})}} + \nonumber\\ &=&\frac{1}{V}\sum_{{\bf k}s}\hbar\omega_s({\bf k})\frac{1}{2} \frac{1+e^{\beta\hbar\omega_s({\bf k})}} {e^{\beta\hbar\omega_s({\bf k})}-1} @@ -221,26 +223,63 @@ w=\frac{1}{V}\frac{\sum_i E_i \exp(-\beta E_i)}{\sum_i \exp(-\beta E_i)}. c_{\text{V}}=\frac{1}{V}\sum_{{\bf k}s}\frac{\partial}{\partial T} \frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1} \] - Large crystal: ($\lim_{V\to\infty}\frac{1}{V}\sum_{{\bf k}}F({\bf k}) - =\int\frac{d{\bf k}}{(2\pi)^3}F({\bf k})$) + Large crystal: \[ - \Rightarrow - c_{\text{V}}=\frac{\partial}{\partial T} + \lim_{v\rightarrow\infty}c_{\text{V}}=\frac{1}{V}\sum_{{\bf k}s} + \frac{\partial}{\partial T} + \frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1} + =\frac{\partial}{\partial T} \sum_s\int\frac{d{\bf k}}{(2\pi)^3} \frac{\hbar\omega_s({\bf k})}{e^{\beta\hbar\omega_s({\bf k})}-1} \] \item \begin{itemize} - \item Debye dispersion relation: $w=ck$ - \item Volume of $k$-space per wave vector:\\ - $(2\pi)^3/V \Rightarrow (2\pi)^3N/V=4\pi k_{\text{D}}^3/3 - \Rightarrow n=\frac{N}{V}=\frac{k_{\text{D}}^3}{6\pi^2}$ + \item {\color{red}3} branches with Debye dispersion relation + $w={\color{green}ck}$ + \item Volume of $k$-space per wave vector: $(2\pi)^3/V$\\ + $\Rightarrow (2\pi)^3N/V=4\pi k_{\text{D}}^3/3 + \Rightarrow n=\frac{N}{V}=\frac{k_{\text{D}}^3}{6\pi^2}$, + $k_{\text{D}}^3=6\pi^2 n$ + \item $dn={\color{blue}\frac{k^2}{2\pi^2}dk}$ \item Debye frequency: $\omega_{\text{D}}=k_{\text{D}}c$ \item Debye temperature: - $k_{\text{B}}\Theta_{\text{D}}=\hbar\omega_{\text{D}}$ + $k_{\text{B}}\Theta_{\text{D}}=\hbar\omega_{\text{D}}$, + $\Theta_{\text{D}}=\hbar ck_{\text{D}}/k_{\text{B}}$, + $\Theta_{\text{D}}^3=\frac{\hbar^3c^3k_{\text{D}}^3} + {k_{\text{B}}^3}= + \frac{\hbar^3c^3}{k_{\text{B}}^3}6\pi^2n$ \end{itemize} Integral: \[ - c_{\text{V}}=\ldots + c_{\text{V}}=\frac{\partial}{\partial T}\, {\color{red}3}\int_0^{k_D} + {\color{blue}\frac{k^2}{2\pi^2}dk} \frac{\hbar {\color{green}ck}} + {e^{\beta\hbar {\color{green}ck}}-1}= + \frac{\partial}{\partial T}\frac{3\hbar c}{2\pi^2}\int_0^{k_D} + \frac{k^3}{e^{\beta\hbar ck}-1}dk= + \frac{3\hbar c}{2\pi^2}\int_0^{k_D} + \frac{k^3e^{\beta\hbar ck}\beta\hbar ck\frac{1}{T}} + {(e^{\beta\hbar ck}-1)^2}dk + \] + Change of variables: $\beta\hbar ck=x$ + \[ + \Rightarrow + k=\frac{x}{\beta\hbar c} \quad \textrm{, } \quad + dk=\frac{1}{\beta\hbar c} dx + \] + \[ + c_{\text{V}}=\frac{3\hbar c}{2\pi^2}\int_0^{\Theta_D/T} + \frac{x^3e^xx}{T(\beta\hbar c)^3(e^x-1)^2}\frac{dx}{\beta\hbar c}= + \frac{3}{2\pi^2T\beta^4\hbar^3 c^3}\int_0^{\Theta_D/T} + \frac{x^4e^x}{(e^x-1)^2}dx + \] + \[ + \frac{3}{2\pi^2T\beta^4\hbar^3 c^3}= + \frac{3k_{\text{B}}}{2\pi^2\beta^3\hbar^3 c^3}= + \frac{3k_{\text{B}}T^33n}{\Theta_{\text{D}}^3} + \] + \[ + \Rightarrow + c_{\text{V}}=9nk_{\text{B}}\left(\frac{T}{\Theta_{\text{D}}} + \right)^3\int_0^{\Theta_D/T}\frac{x^4e^x}{(e^x-1)^2}dx \] \end{enumerate}