X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=solid_state_physics%2Ftutorial%2F2_04s.tex;h=b03977cab07536a0db1e5f909f0e5ae4e24e524f;hp=7391ad03ebcc7da137b4e0309d53929564a3d67b;hb=183bd2b78445842ee859e2f10f8ab9dc84cf2776;hpb=75000006ad7eda5e22f1ca8fb47b619eb92c3cac diff --git a/solid_state_physics/tutorial/2_04s.tex b/solid_state_physics/tutorial/2_04s.tex index 7391ad0..b03977c 100644 --- a/solid_state_physics/tutorial/2_04s.tex +++ b/solid_state_physics/tutorial/2_04s.tex @@ -215,25 +215,71 @@ {\left.\frac{\partial p}{\partial V}\right|_T}=0 \] \item $\frac{1}{B}=-\frac{1}{V}\left.\frac{\partial V}{\partial p}\right|_T$ - and $\alpha_V=\frac{1}{V}\left.\frac{\partial V}{\partial T}\right|_p$ + and $\alpha_V=\frac{1}{V}\left.\frac{\partial V}{\partial T}\right|_p$\\ \[ - C_p-C_V=\left.\frac{\partial E}{\partial T}\right|_p- - \left.\frac{\partial E}{\partial T}\right|_V= - \frac{\partial E}{\partial S} + C_p=\left.\frac{\partial H}{\partial T}\right|_p= + \left.\frac{\partial H}{\partial S}\right|_p + \left.\frac{\partial S}{\partial T}\right|_p= + T\left.\frac{\partial S}{\partial T}\right|_p + \] + \[ + C_V=\left.\frac{\partial E}{\partial T}\right|_V= + \left.\frac{\partial E}{\partial S}\right|_V + \left.\frac{\partial S}{\partial T}\right|_V= + T\left.\frac{\partial S}{\partial T}\right|_V + \] + \[ + \Rightarrow C_p-C_V= + T\left.\frac{\partial S}{\partial T}\right|_p- + T\left.\frac{\partial S}{\partial T}\right|_V= + T\left( \left.\frac{\partial S}{\partial T}\right|_p- - \frac{\partial E}{\partial S} + \left.\frac{\partial S}{\partial T}\right|_V + \right) + \] + Using the equality + \[ + dS=\left.\frac{\partial S}{\partial T}\right|_p dT + +\left.\frac{\partial S}{\partial p}\right|_T dp + \Rightarrow \left.\frac{\partial S}{\partial T}\right|_V= - T\left.\frac{\partial S}{\partial T}\right|_p- - T\left.\frac{\partial S}{\partial T}\right|_V + \left.\frac{\partial S}{\partial T}\right|_p+ + \left.\frac{\partial S}{\partial p}\right|_T + \left.\frac{\partial p}{\partial T}\right|_V + \] + and the Maxwell relation + \[ + \left.\frac{\partial S}{\partial p}\right|_T= + -\left.\frac{\partial V}{\partial T}\right|_p + \] + and the equality + \[ + dV=\left.\frac{\partial V}{\partial T}\right|_p dT+ + \left.\frac{\partial V}{\partial p}\right|_T dp + \stackrel{\left.\frac{\partial}{\partial T}\right|_V}{\Rightarrow} + 0=\left.\frac{\partial V}{\partial T}\right|_p+ + \left.\frac{\partial V}{\partial p}\right|_T + \left.\frac{\partial p}{\partial T}\right|_V + \Rightarrow + \left.\frac{\partial p}{\partial T}\right|_V= + -\frac{\left.\frac{\partial V}{\partial T}\right|_p} + {\left.\frac{\partial V}{\partial p}\right|_T} + \] + we obtain: + \[ + C_p-C_V=T\left( + -\left.\frac{\partial S}{\partial p}\right|_T + \left.\frac{\partial p}{\partial T}\right|_V + \right)=T\left( + \left.\frac{\partial V}{\partial T}\right|_p + \left.\frac{\partial p}{\partial T}\right|_V + \right)=T\left( + \frac{\left.\left.\frac{\partial V}{\partial T}\right|_p\right.^2} + {-\left.\frac{\partial V}{\partial p}\right|_T} + \right)=T\left(\frac{V^2\alpha_V^2}{V\frac{1}{B}}\right)= + TVB\alpha_V^2 \] - Find an expression for $C_p-C_V$ in terms of temperature $T$, - volume $V$, the coefficient of thermal expansion $\alpha_V$ and - the inverse bulk modulus (isothermal compressibility) - $\frac{1}{B}=-\frac{1}{V}\left.\frac{\partial V}{\partial p}\right|_T$.\\ - $C_p=\left.\frac{\partial E}{\partial T}\right|_p$ is the heat capacity - for constant pressure and - $C_V=\left.\frac{\partial E}{\partial T}\right|_V$ is the heat capacity - for constant volume. + For a rigorously harmonic potential $C_p=C_V$. \end{enumerate} \end{document}