X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=solid_state_physics%2Ftutorial%2F2n_01.tex;fp=solid_state_physics%2Ftutorial%2F2n_01.tex;h=3e5d71191d866271115579fd360f38b33382d5cc;hp=0000000000000000000000000000000000000000;hb=149f00a0e7b93e9a5d836a910b131ca1445eacbd;hpb=2c91598c223e213c62f9a4356f8db5ed460d8a40 diff --git a/solid_state_physics/tutorial/2n_01.tex b/solid_state_physics/tutorial/2n_01.tex new file mode 100644 index 0000000..3e5d711 --- /dev/null +++ b/solid_state_physics/tutorial/2n_01.tex @@ -0,0 +1,72 @@ +\pdfoutput=0 +\documentclass[a4paper,11pt]{article} +\usepackage[activate]{pdfcprot} +\usepackage{verbatim} +\usepackage{a4} +\usepackage{a4wide} +\usepackage[german]{babel} +\usepackage[latin1]{inputenc} +\usepackage[T1]{fontenc} +\usepackage{amsmath} +\usepackage{ae} +\usepackage{aecompl} +\usepackage[dvips]{graphicx} +\graphicspath{{./img/}} +\usepackage{color} +\usepackage{pstricks} +\usepackage{pst-node} +\usepackage{rotating} + +\setlength{\headheight}{0mm} \setlength{\headsep}{0mm} +\setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm} +\setlength{\oddsidemargin}{-10mm} +\setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm} +\setlength{\textheight}{26cm} \setlength{\headsep}{0cm} + +\renewcommand{\labelenumi}{(\alph{enumi})} + +\begin{document} + +% header +\begin{center} + {\LARGE {\bf Materials Physics II}\\} + \vspace{8pt} + Prof. B. Stritzker\\ + SS 2011\\ + \vspace{8pt} + {\Large\bf Tutorial 1} +\end{center} + +\section{Indirect band gap of silicon} + +Some facts about silicon: +\begin{itemize} + \item Lattice constant: $a=5.43 \cdot 10^{-10} \, m$. + \item Silicon has an indirect band gap. + \begin{itemize} + \item The minimum of the conduction band is located at + $k=0.85 \frac{2 \pi}{a}$. + \item The maximum of the valance band is located at $k=0$. + \item The energy gap is $E_g=1.12 \, eV$. + \end{itemize} +\end{itemize} +\begin{enumerate} + \item Calculate the wavelength of the light necessary to lift an electron from + the valence to the conduction band. + What is the momentum of such a photon? + \item Calculate the phonon momentum necessary for the transition. + Compare the momentum values of phonon and photon. + \item Draw conclusions concerning optical applications. +\end{enumerate} + +\section{Charge carrier density of semiconductors} + +Calculate the charge carrier densities $n$ and $p$ for $E_{\text{c}}-\mu_{\text{F}} >> k_{\text{B}}T$ and $\mu_{\text{F}}-E_{\text{v}} >> k_{\text{B}}T$.\\\\ +{\bf Hint:} +Consider the influence of these two conditions for the energy of the states, which are situated in the conduction and valence band. +The parabolic approximation of the density of states of electrons in the conduction and holes in the valence band with the effective masses $m_n$ and $m_p$ is given by +$D_c(\epsilon)=\frac{1}{2\pi^2}(\frac{2m_n}{\hbar^2})^{3/2}(\epsilon-E_c)^{1/2}$ and +$D_v(\epsilon)=\frac{1}{2\pi^2}(\frac{2m_p}{\hbar^2})^{3/2}(E_v-\epsilon)^{1/2}$. +If you do not calculate the non-simplified Fermi-integral the substitutions $x=(\epsilon - E_{\text{c}})/k_{\text{B}}T$ and $x=(E_{\text{v}}-\epsilon)/k_{\text{B}}T$ can be used. Furthermore use the equality $\int_0^{\infty} x^{1/2} e^{-x} dx = 1/2 \sqrt{\pi}$. + +\end{document}