X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=blobdiff_plain;f=solid_state_physics%2Ftutorial%2F2n_01.tex;fp=solid_state_physics%2Ftutorial%2F2n_01.tex;h=404988f2e75d7fc923de7982bbfb6c2af2c658ff;hp=b53a276374c7445fe53574ca40304272dba1ca43;hb=94afb95da60b2cdbcd5c328661715eda4416de19;hpb=fdf1f976b879c9b7403c1d76c9906aa850614862 diff --git a/solid_state_physics/tutorial/2n_01.tex b/solid_state_physics/tutorial/2n_01.tex index b53a276..404988f 100644 --- a/solid_state_physics/tutorial/2n_01.tex +++ b/solid_state_physics/tutorial/2n_01.tex @@ -68,6 +68,6 @@ The parabolic approximation of the density of states of electrons in the conduct $D_c(\epsilon)=\frac{1}{2\pi^2}(\frac{2m_n}{\hbar^2})^{3/2}(\epsilon-E_c)^{1/2}$ and $D_v(\epsilon)=\frac{1}{2\pi^2}(\frac{2m_p}{\hbar^2})^{3/2}(E_v-\epsilon)^{1/2}$. Simplify the Fermi function before calculating the integral and use the substitutions $x=(\epsilon - E_{\text{c}})/k_{\text{B}}T$ and $x=(E_{\text{v}}-\epsilon)/k_{\text{B}}T$. -Furthermore use the equality $\int_0^{\infty} x^{1/2} e^{-x} dx = 1/2 \sqrt{\pi}$. +Furthermore use the equality $\int_0^{\infty} x^{1/2} e^{-x} dx = \frac{\sqrt{\pi}}{2}$. \end{document}