1 and 100 fs t c for B thermo ...
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Tue, 5 Oct 2010 15:46:09 +0000 (17:46 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Tue, 5 Oct 2010 15:46:09 +0000 (17:46 +0200)
posic/publications/sic_prec.tex

index f4aa4bf..1897e4f 100644 (file)
@@ -112,6 +112,7 @@ For structural relaxation of defect structures the same algorithm was used with
 
 The formation energy $E-N_{\text{Si}}\mu_{\text{Si}}-N_{\text{C}}\mu_{\text{C}}$ of a defect configuration is defined by choosing SiC as a particle reservoir for the C impurity, i.e. the chemical potentials are determined by the cohesive energies of a perfect Si and SiC supercell after ionic relaxation.
 Migration and recombination pathways have been investigated utilizing the constraint conjugate gradient relaxation technique\cite{kaukonen98}.
+Time constants of \unit[1]{fs}, which corresponds to direct velocity scaling, and \unit[100]{fs}, which results in weaker coupling to the heat bath allowing the diffusing atoms to take different pathways, were used for the Berendsen thermostat for structural relaxation within the migration calculations.
 
 \section{Results}
 
@@ -145,7 +146,7 @@ For both configurations EA overestimates the energy of formation by approximatel
 Thus, nearly the same difference in energy has been observed for these configurations in both methods.
 However, we have found the BC configuration to constitute a saddle point within the EA description relaxing into the \hkl<1 1 0> configuration.
 Due to the high formation energy of the BC defect resulting in a low probability of occurrence of this defect, the wrong description is not posing a serious limitation of the EA potential.
-A more detailed discussion of C defects in Si modeled by EA and DFT including further defect configurations are presented in a previous study\cite{zirkelbach10a}.
+A more detailed discussion of C defects in Si modeled by EA and DFT including further defect configurations can be found in our recently published article\cite{zirkelbach10a}.
 
 Regarding intrinsic defects in Si, both methods predict energies of formation that are within the same order of magnitude.
 However discrepancies exist.
@@ -210,11 +211,11 @@ For the latter case a migration path, which involves a C$_{\text{i}}$ \hkl<1 1 0
 \begin{center}
 \includegraphics[width=\columnwidth]{110mig.ps}
 \end{center}
-\caption{Migration barrier and structures of the \hkl[0 0 -1] DB (left) to the \hkl[0 -1 0] DB (right) transition involving the \hkl[1 1 0] DB (center) configuration.}
+\caption{Migration barrier and structures of the \hkl[0 0 -1] DB (left) to the \hkl[0 -1 0] DB (right) transition involving the \hkl[1 1 0] DB (center) configuration. Migration simulations were performed utilizing time constants of \unit[1]{fs} (solid line) and \unit[100]{fs} (dashed line) for the Berendsen thermostat.}
 \label{fig:mig}
 \end{figure}
 Approximately \unit[2.24]{eV} are needed to turn the C$_{\text{i}}$ \hkl[0 0 -1] DB into the C$_{\text{i}}$ \hkl[1 1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
-Another barrier of \unit[0.90]{eV} exists for the rotation into the C$_{\text{i}}$ \hkl[0 -1 0] DB configuration.
+Another barrier of \unit[0.90]{eV} exists for the rotation into the C$_{\text{i}}$ \hkl[0 -1 0] DB configuration for the path obtained with a time constant of \unit[100]{fs} for the Berendsen thermostat.
 Roughly the same amount would be necessary to excite the C$_{\text{i}}$ \hkl[1 1 0] DB to the BC configuration (\unit[0.40]{eV}) and a successive migration into the \hkl[0 0 1] DB configuration (\unit[0.50]{eV}) as displayed in our previous study\cite{zirkelbach10a}.
 The former diffusion process, however, would more nicely agree with the ab initio path, since the migration is accompanied by a rotation of the DB orientation.
 By considering a two step process and assuming equal preexponential factors for both diffusion steps, the probability of the total diffusion event is given by $\exp(\frac{\unit[2.24]{eV}+\unit[0.90]{eV}}{k_{\text{B}}T})$, which corresponds to a single diffusion barrier that is 3.5 times higher than the barrier obtained by ab initio calculations.