almost finished results
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Wed, 22 Sep 2010 14:32:02 +0000 (16:32 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Wed, 22 Sep 2010 14:32:02 +0000 (16:32 +0200)
posic/publications/sic_prec.tex

index 0524c1a..8a6d36d 100644 (file)
@@ -278,20 +278,40 @@ Due to the potential enhanced problem of slow phase space propagation, pushing t
 Instead higher temperatures are utilized to compensate overestimated diffusion barriers.
 These are overestimated by a factor of 2.4 to 3.5.
 Scaling the absolute temperatures accordingly results in maximum temperatures of \unit[1460-2260]{$^{\circ}$C}.
-Since melting already occurs shortly below the melting point of the potetnial (2450 K) due to the defects, a maximum temperature of \unit[2050]{$^{\circ}$C} is used.
-Fig.~\ref{fig:tot} shows the resulting bonds for various temperatures.
+Since melting already occurs shortly below the melting point of the potetnial (2450 K)\cite{albe_sic_pot} due to the presence of defects, a maximum temperature of \unit[2050]{$^{\circ}$C} is used.
+
+Fig.~\ref{fig:tot} shows the resulting radial distribution functions for various temperatures.
 \begin{figure}
 \begin{center}
 \includegraphics[width=\columnwidth]{../img/tot_pc_thesis.ps}\\
 \includegraphics[width=\columnwidth]{../img/tot_pc3_thesis.ps}\\
 \includegraphics[width=\columnwidth]{../img/tot_pc2_thesis.ps}
 \end{center}
-\caption{Radial distribution function for Si-C (top), Si-Si (center) and C-C (bottom) pairs for the C insertion into $V_1$ at elevated temperatures. In the latter case dashed arrows mark C-C distances occuring from C$_{\text{i}}$ \hkl<1 0 0> DB combinations, solid arrows mark C-C distances of pure C$_{\text{s}}$ combinations and the dashed line marks C-C distances of a C$_{\text{i}}$ and C$_{\text{s}}$ combination.}
+\caption{Radial distribution function for Si-C (top), Si-Si (center) and C-C (bottom) pairs for the C insertion into $V_1$ at elevated temperatures. For the Si-C distribution resulting Si-C distances of a C$_{\text{s}}$ configuration are plotted. In the C-C distribution dashed arrows mark C-C distances occuring from C$_{\text{i}}$ \hkl<1 0 0> DB combinations, solid arrows mark C-C distances of pure C$_{\text{s}}$ combinations and the dashed line marks C-C distances of a C$_{\text{i}}$ and C$_{\text{s}}$ combination.}
 \label{fig:tot}
 \end{figure}
-Obviously a phase transition occurs ... WEITER
-
-Barfoo ...
+The first noticeable and promising change observed for the Si-C bonds is the successive decline of the artificial peak at the cut-off distance with increasing temperature.
+Obviously enough kinetic energy is provided to affected atoms that are enabled to escape the cut-off region.
+Additionally a more important structural change was observed, which is illustrated in the two shaded areas of the graph.
+Obviously the structure obtained at \unit[450]{$^{\circ}$C}, which was found to be dominated by C$_{\text{i}}$, transforms into a C$_{\text{s}}$ dominated structure with increasing temperature.
+Comparing the radial distribution at \unit[2050]{$^{\circ}$C} to the resulting bonds of C$_{\text{s}}$ in c-Si excludes all possibility of doubt.
+
+The phase transformation is accompanied by an arising Si-Si peak at \unit[0.325]{nm}, which corresponds to the distance of second next neighbored Si atoms alonga \hkl<1 1 0> boind chain with C$_{\text{s}}$ inbetween.
+Since the expected distance of these Si pairs in 3C-SiC is \unit[0.308]{nm} the existing SiC structures embedded in the c-Si host are stretched.
+
+According to the C-C radial distribution agglomeration of C fails to appear even for elevated temperatures as can be seen on the total amount of C pairs within the investigated separation range, wich does not change significantly.
+However, a small decrease in the amount of next neighboured C pairs can be observed with increasing temperature.
+This high temperature behavior is promising since breaking of these diomand- and graphite-like bonds is mandatory for the formation of 3C-SiC.
+Obviously acceleration of the dynamics occured by supplying additional kinetic energy.
+A slight shift towards higher distances can be observed for the maximum located shortly above \unit[0.3]{nm}.
+Arrows with dashed lines mark C-C distances resulting from C$_{\text{i}}$ \hkl<1 0 0> DB combinations while arrows with solid lines mark distances arising from combinations of C$_{\text{s}}$.
+The continuous dashed line corresponds to the distance of C$_{\text{s}}$ and a next neighboured C$_{\text{i}}$ DB.
+Obviously the shift of the peak is caused by the advancing transformation of the C$_{\text{i}}$ DB into the C$_{\text{s}}$ defect.
+Quite high g(r) values are obtained for distances inbetween the continuous dashed line and the first arrow with a solid line.
+For the most part these structures can be identified as configurations of C$_{\text{s}}$ with either another C atom that basically occupies a Si lattice site but is displaced by a Si interstitial residing in the very next surrounding or a C atom that nearly occupies a Si lattice site forming a defect other than the \hkl<1 0 0>-type with the Si atom.
+Again, this is a quite promising result since the C atoms are taking the appropriate coordination as expected in 3C-SiC.
+
+Fig.~\ref{fig:v2} displays the radial distribution for high C concentrations.
 \begin{figure}
 \begin{center}
 \includegraphics[width=\columnwidth]{../img/12_pc_thesis.ps}\\
@@ -300,9 +320,26 @@ Barfoo ...
 \caption{Radial distribution function for Si-C (top) and C-C (bottom) pairs for the C insertion into $V_2$ at elevated temperatures.}
 \label{fig:v2}
 \end{figure}
+The amorphous SiC-like phase remains.
+No significant change in structure is observed.
+However, the decrease of the cut-off artifact and slightly sharper peaks observed with increasing temperature, in turn, indicate a slight acceleration of the dynamics realized by the supply of kinetic energy.
+However, it is not sufficient to enable the amorphous to crystalline transition.
+In contrast, even though next neighbored C bonds could be partially dissolved in the system exhibiting low C concentrations the amount of next neighbored C pairs even increased in the latter case.
+Moreover the peak at \unit[0.252]{nm}, which gets slightly more distinct, equals the second next neighbor distance in diamond and indeed is made up by a structure of two C atoms interconnected by a third C atom.
+Obviously conducive rearrangements of C are hindered in a system, in which high amounts of C are incoorporated within a too short period of time.
+Thus, for these systems even larger time scales are necessary for an amorphous to crystalline transition and structural evolution in general, which is not accessible by the traditional MD technique.
+% maybe put description of bonds in here ...
+
+
+
 
 \section{Discussion}
 
+
+Sii stress compensation ...
+
+Both, low and high, acceleration not enough to either observe C agglomeration or amorphous to crystalline transition ...
+
 The first-principles results are in good agreement to previous work on this subject\cite{burnard93,leary97,dal_pino93,capaz94}.
 The C-Si \hkl<1 0 0> dumbbell interstitial is found to be the ground state configuration of a C defect in Si.
 The lowest migration path already proposed by Capaz et~al.\cite{capaz94} is reinforced by an additional improvement of the quantitative conformance of the barrier height calculated in this work (\unit[0.9]{eV}) with experimentally observed values (\unit[0.70]{eV} -- \unit[0.87]{eV})\cite{lindner06,song90,tipping87}.