sec checkin seminar ...
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Thu, 16 Jun 2011 14:05:49 +0000 (16:05 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Thu, 16 Jun 2011 14:05:49 +0000 (16:05 +0200)
posic/publications/sic_prec_merge.tex

index e069fb9..0e1daf5 100644 (file)
@@ -8,6 +8,15 @@
 \usepackage{amsfonts}
 \usepackage{amssymb}
 
+\newcommand{\si}{Si$_{\text{i}}${}}
+\newcommand{\ci}{C$_{\text{i}}${}}
+\newcommand{\cs}{C$_{\text{s}}${}}
+\newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
+\newcommand{\degk}[1]{\unit[#1]{K}{}}
+\newcommand{\distn}[1]{\unit[#1]{nm}{}}
+\newcommand{\dista}[1]{\unit[#1]{\AA}{}}
+\newcommand{\perc}[1]{\unit[#1]{\%}{}}
+
 % additional stuff
 \usepackage{miller}
 
@@ -155,7 +164,11 @@ The binding energy of a defect pair is given by the difference of the formation
 Accordingly, energetically favorable configurations result in binding energies below zero while unfavorable configurations show positive values for the binding energy.
 The interaction strength, i.e. the absolute value of the binding energy, approaches zero for increasingly non-interacting isolated defects.
 
-\section{Results}
+\section{Comparison of classical potential and first-principles methods}
+\label{sec:comp}
+
+In a first step, quantum-mechanical calculations of defects in Si and respective diffusion processes are compared to classical potential simulations as well as to results from literature.
+Shortcomings of the analytical potential approach are revealed and its applicability is discussed.
 
 \subsection{Carbon and silicon defect configurations}
 
@@ -220,7 +233,7 @@ The respective structures are shown in Fig.~\ref{fig:sep_def}.
 \label{table:sep_eof}
 \end{table*}
 
-Although discrepancies exist, calssical potential and first-principles methods depict the correct order of the formation energies with regard to C defects in Si.
+Although discrepancies exist, classical potential and first-principles methods depict the correct order of the formation energies with regard to C defects in Si.
 Substitutional C (C$_{\text{s}}$) constitutes the energetically most favorable defect configuration.
 Since the C atom occupies an already vacant Si lattice site, C$_{\text{s}}$ is not an interstitial defect.
 The quantum-mechanical result agrees well with the result of another ab initio study\cite{dal_pino93}.
@@ -259,37 +272,61 @@ The formation energy of \unit[3.96]{eV} for this type of interstitial is equal t
 Obviously, the authors did not carefully check the relaxed results assuming a hexagonal configuration.
 As has been shown, variations of this defect exist, in which the displacement is only along two \hkl<1 0 0> axes ($E_\text{f}=3.8\,\text{eV}$) or along a single \hkl<1 0 0> axes ($E_\text{f}=3.6\,\text{eV}$) successively approximating the tetdrahedral configuration and formation energy\cite{zirkelbach09}.
 The existence of these local minima located near the tetrahedral configuration seems to be an artifact of the analytical potential without physical authenticity revealing fundamental problems of analytical potential models for describing defect structures.
-However, the energy barrier among the artificial and tetrahedral configuration is found to be smaller than \unit[0.2]{eV}.
+However, further investigations revealed the energy barrier of the transition from the artificial into the tetrahedral configuration to be smaller than \unit[0.2]{eV}.
 Hence, these artifacts have a negligible influence in finite temperature simulations.
 % nevertheless ...
 While not completely rendering impossible further, more challenging empirical potential studies on large systems, these artifacts have to be taken into account in the following investigations of defect combinations.
 
-% todo - where to put this!
-% spin polarization and C mobility
+% spin polarization
 Instead of giving an explicit value of the energy of formation, Capaz et al.\cite{capaz94}, investigating migration pathways of the C$_{\text{i}}$ \hkl<1 0 0> DB, find this defect to be \unit[2.1]{eV} lower in energy than the BC configuration.
 The BC configuration is claimed to constitute the saddle point within the C$_{\text{i}}$ \hkl[0 0 -1] DB migration path residing in the \hkl(1 1 0) plane and, thus, interpreted as the barrier of migration for the respective path.
 However, the present study indicates a local minimum state for the BC defect if spin polarized calculations are performed resulting in a net magnetization of two electrons localized in a torus around the C atom.
 Another DFT calculation without fully accounting for the electron spin results in the smearing of a single electron over two non-degenerate Kohn-Sham states and an increase of the total energy by \unit[0.3]{eV} for the BC configuration.
-Regardless of the rather small correction of \unit[0.3]{eV} due to the spin, the difference we found is much smaller (\unit[0.94]{eV}), which would nicely compare to experimentally observed migration barriers of \unit[0.70-0.87]{eV}\cite{lindner06,tipping87,song90}.
-However, since the BC configuration constitutes a real local minimum another barrier exists, which is about \unit[1.2]{eV} in height.
 %
-Indeed, Capaz~et~al. propose another path and find it to be the lowest in energy\cite{capaz94}, in which a C$_{\text{i}}$ \hkl[0 0 -1] DB migrates to a C$_{\text{i}}$ \hkl[0 -1 0] DB located at the neighbored Si lattice site in \hkl[1 1 -1] direction.
-Calculations in this work reinforce this path by an additional improvement of the quantitative conformance of the barrier height (\unit[0.90]{eV}) to experimental values.
 A more detailed description can be found in a previous study\cite{zirkelbach10}.
 Next to the C$_{\text{i}}$ BC configuration the vacancy and Si$_{\text{i}}$ \hkl<1 0 0> DB have to be treated by taking into account the spin of the electrons.
 For the vacancy the net spin up electron density is localized in caps at the four surrounding Si atoms directed towards the vacant site.
 In the  Si$_{\text{i}}$ \hkl<1 0 0> DB configuration the net spin up density is localized in two caps at each of the two DB atoms perpendicularly aligned to the bonds to the other two Si atoms respectively.
 No other configuration, within the ones that are mentioned, is affected.
 
-% todo- where to put mobility
-Concerning the mobility of the ground state Si$_{\text{i}}$, an activation energy of \unit[0.67]{eV} for the transition of the Si$_{\text{i}}$ \hkl[0 1 -1] to \hkl[1 1 0] DB located at the neighbored Si lattice site in \hkl[1 1 -1] direction is obtained by first-principles calculations.
-Further quantum-mechanical investigations revealed a barrier of \unit[0.94]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ H, \unit[0.53]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ T and \unit[0.35]{eV} for the Si$_{\text{i}}$ H to Si$_{\text{i}}$ T transition.
-These are of the same order of magnitude than values derived from other ab initio studies\cite{bloechl93,sahli05}.
+\subsection{Mobility of carbon defects}
+\label{subsection:cmob}
+
+To accurately model the SiC precipitation, which involves the agglomeration of C, a proper description of the migration process of the C impurity is required.
+As shown in a previous study\cite{zirkelbach10}, quantum-mechanical results properly describe the C$_{\text{i}}$ \hkl<1 0 0> DB diffusion resulting in a migration barrier height of \unit[0.90]{eV}, excellently matching experimental values of \unit[0.70-0.87]{eV}\cite{lindner06,tipping87,song90} and, for this reason, reinforcing the respective migration path as already proposed by Capaz et~al.\cite{capaz94}.
+During transition a C$_{\text{i}}$ \hkl[0 0 -1] DB migrates towards a  C$_{\text{i}}$ \hkl[0 -1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
+However, it turned out that the description fails if the EA potential is used, which overestimates the migration barrier (\unit[2.2]{eV}) by a factor of 2.4.
+In addition a different diffusion path is found to exhibit the lowest migration barrier.
+A C$_{\text{i}}$ \hkl[0 0 -1] DB turns into the \hkl[0 0 1] configuration at the neighbored lattice site.
+The transition involves the C$_{\text{i}}$ BC configuration, which, however, was found to be unstable relaxing into the C$_{\text{i}}$ \hkl<1 1 0> DB configuration.
+If the migration is considered to occur within a single step, the kinetic energy of \unit[2.2]{eV} is sufficient to turn the \hkl<1 0 0> DB into the BC and back into a \hkl<1 0 0> DB configuration.
+If, on the other hand, a two step process is assumed, the BC configuration will most probably relax into the C$_{\text{i}}$ \hkl<1 1 0> DB configuration resulting in different relative energies of the intermediate state and the saddle point.
+For the latter case a migration path, which involves a C$_{\text{i}}$ \hkl<1 1 0> DB configuration, is proposed and displayed in Fig.~\ref{fig:mig}.
+\begin{figure}
+\begin{center}
+\includegraphics[width=\columnwidth]{110mig.ps}
+\end{center}
+\caption{Migration barrier and structures of the \hkl[0 0 -1] DB (left) to the \hkl[0 -1 0] DB (right) transition involving the \hkl[1 1 0] DB (center) configuration. Migration simulations were performed utilizing time constants of \unit[1]{fs} (solid line) and \unit[100]{fs} (dashed line) for the Berendsen thermostat.}
+\label{fig:mig}
+\end{figure}
+Approximately \unit[2.24]{eV} are needed to turn the C$_{\text{i}}$ \hkl[0 0 -1] DB into the C$_{\text{i}}$ \hkl[1 1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
+Another barrier of \unit[0.90]{eV} exists for the rotation into the C$_{\text{i}}$ \hkl[0 -1 0] DB configuration for the path obtained with a time constant of \unit[100]{fs} for the Berendsen thermostat.
+Roughly the same amount would be necessary to excite the C$_{\text{i}}$ \hkl[1 1 0] DB to the BC configuration (\unit[0.40]{eV}) and a successive migration into the \hkl[0 0 1] DB configuration (\unit[0.50]{eV}) as displayed in our previous study\cite{zirkelbach10}.
+The former diffusion process, however, would more nicely agree with the ab initio path, since the migration is accompanied by a rotation of the DB orientation.
+By considering a two step process and assuming equal preexponential factors for both diffusion steps, the probability of the total diffusion event is given by $\exp(\frac{\unit[2.24]{eV}+\unit[0.90]{eV}}{k_{\text{B}}T})$, which corresponds to a single diffusion barrier that is 3.5 times higher than the barrier obtained by ab initio calculations.
+
+Accordingly, the effective barrier of migration of C$_{\text{i}}$ is overestimated by a factor of 2.4 to 3.5 compared to the highly accurate quantum-mechanical methods.
+This constitutes a serious limitation that has to be taken into account for modeling the C-Si system using the otherwise quite promising EA potential.
+
+
+
+
 
 
-\subsection{Formation energies of C$_{\text{i}}$ and C$_{\text{s}}$-Si$_{\text{i}}$}
 
-As has been shown in a previous study\cite{zirkelbach11a}, the energetically most favorable configuration of C$_{\text{s}}$ and Si$_{\text{i}}$ is obtained for C$_{\text{s}}$ located at the neighbored lattice site along the \hkl<1 1 0> bond chain of a Si$_{\text{i}}$ \hkl<1 1 0> DB.
+\section{Excursus: Competition of C$_{\text{i}}$ and C$_{\text{s}}$-Si$_{\text{i}}$}
+
+As has been shown, the energetically most favorable configuration of C$_{\text{s}}$ and Si$_{\text{i}}$ is obtained for C$_{\text{s}}$ located at the neighbored lattice site along the \hkl<1 1 0> bond chain of a Si$_{\text{i}}$ \hkl<1 1 0> DB.
 However, the energy of formation is slightly higher than that of the C$_{\text{i}}$ \hkl<1 0 0> DB, which constitutes the ground state for a C impurity introduced into otherwise perfect c-Si.
 
 For a possible clarification of the controversial views on the participation of C$_{\text{s}}$ in the precipitation mechanism by classical potential simulations, test calculations need to ensure the proper description of the relative formation energies of combined structures of C$_{\text{s}}$ and Si$_{\text{i}}$ compared to C$_{\text{i}}$.
@@ -326,34 +363,26 @@ Since C is introduced into a perfect Si crystal and the number of particles is c
 In either case, no configuration more favorable than the C$_{\text{i}}$ \hkl<1 0 0> DB has been found.
 Thus, a proper description with respect to the relative energies of formation is assumed for the EA potential.
 
-\subsection{Carbon mobility}
-\label{subsection:cmob}
 
-To accurately model the SiC precipitation, which involves the agglomeration of C, a proper description of the migration process of the C impurity is required.
-As shown in a previous study\cite{zirkelbach10}, quantum-mechanical results properly describe the C$_{\text{i}}$ \hkl<1 0 0> DB diffusion resulting in a migration barrier height of \unit[0.90]{eV}, excellently matching experimental values of \unit[0.70-0.87]{eV}\cite{lindner06,tipping87,song90} and, for this reason, reinforcing the respective migration path as already proposed by Capaz et~al.\cite{capaz94}.
-During transition a C$_{\text{i}}$ \hkl[0 0 -1] DB migrates towards a  C$_{\text{i}}$ \hkl[0 -1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
-However, it turned out that the description fails if the EA potential is used, which overestimates the migration barrier (\unit[2.2]{eV}) by a factor of 2.4.
-In addition a different diffusion path is found to exhibit the lowest migration barrier.
-A C$_{\text{i}}$ \hkl[0 0 -1] DB turns into the \hkl[0 0 1] configuration at the neighbored lattice site.
-The transition involves the C$_{\text{i}}$ BC configuration, which, however, was found to be unstable relaxing into the C$_{\text{i}}$ \hkl<1 1 0> DB configuration.
-If the migration is considered to occur within a single step, the kinetic energy of \unit[2.2]{eV} is sufficient to turn the \hkl<1 0 0> DB into the BC and back into a \hkl<1 0 0> DB configuration.
-If, on the other hand, a two step process is assumed, the BC configuration will most probably relax into the C$_{\text{i}}$ \hkl<1 1 0> DB configuration resulting in different relative energies of the intermediate state and the saddle point.
-For the latter case a migration path, which involves a C$_{\text{i}}$ \hkl<1 1 0> DB configuration, is proposed and displayed in Fig.~\ref{fig:mig}.
-\begin{figure}
-\begin{center}
-\includegraphics[width=\columnwidth]{110mig.ps}
-\end{center}
-\caption{Migration barrier and structures of the \hkl[0 0 -1] DB (left) to the \hkl[0 -1 0] DB (right) transition involving the \hkl[1 1 0] DB (center) configuration. Migration simulations were performed utilizing time constants of \unit[1]{fs} (solid line) and \unit[100]{fs} (dashed line) for the Berendsen thermostat.}
-\label{fig:mig}
-\end{figure}
-Approximately \unit[2.24]{eV} are needed to turn the C$_{\text{i}}$ \hkl[0 0 -1] DB into the C$_{\text{i}}$ \hkl[1 1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
-Another barrier of \unit[0.90]{eV} exists for the rotation into the C$_{\text{i}}$ \hkl[0 -1 0] DB configuration for the path obtained with a time constant of \unit[100]{fs} for the Berendsen thermostat.
-Roughly the same amount would be necessary to excite the C$_{\text{i}}$ \hkl[1 1 0] DB to the BC configuration (\unit[0.40]{eV}) and a successive migration into the \hkl[0 0 1] DB configuration (\unit[0.50]{eV}) as displayed in our previous study\cite{zirkelbach10}.
-The former diffusion process, however, would more nicely agree with the ab initio path, since the migration is accompanied by a rotation of the DB orientation.
-By considering a two step process and assuming equal preexponential factors for both diffusion steps, the probability of the total diffusion event is given by $\exp(\frac{\unit[2.24]{eV}+\unit[0.90]{eV}}{k_{\text{B}}T})$, which corresponds to a single diffusion barrier that is 3.5 times higher than the barrier obtained by ab initio calculations.
 
-Accordingly, the effective barrier of migration of C$_{\text{i}}$ is overestimated by a factor of 2.4 to 3.5 compared to the highly accurate quantum-mechanical methods.
-This constitutes a serious limitation that has to be taken into account for modeling the C-Si system using the otherwise quite promising EA potential.
+
+
+
+\section{Quantum-mechanical investigations of defect combinations and related diffusion processes}
+\label{sec:qm}
+
+Qm stuff ... more accurate, less efficient ... some small probs that ...
+or in intro ...
+
+\subsection{Mobility of silicon defects}
+
+% todo- where to put mobility
+Concerning the mobility of the ground state Si$_{\text{i}}$, an activation energy of \unit[0.67]{eV} for the transition of the Si$_{\text{i}}$ \hkl[0 1 -1] to \hkl[1 1 0] DB located at the neighbored Si lattice site in \hkl[1 1 -1] direction is obtained by first-principles calculations.
+Further quantum-mechanical investigations revealed a barrier of \unit[0.94]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ H, \unit[0.53]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ T and \unit[0.35]{eV} for the Si$_{\text{i}}$ H to Si$_{\text{i}}$ T transition.
+These are of the same order of magnitude than values derived from other ab initio studies\cite{bloechl93,sahli05}.
+
+\section{Classical potential calculations on the SiC precipitation in Si}
+\label{sec:md}
 
 \subsection{Molecular dynamics simulations}