more tonight or tomorrow
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Thu, 16 Jun 2011 15:51:23 +0000 (17:51 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Thu, 16 Jun 2011 15:51:23 +0000 (17:51 +0200)
posic/publications/sic_prec_merge.tex

index 0e1daf5..79a257d 100644 (file)
@@ -309,7 +309,7 @@ For the latter case a migration path, which involves a C$_{\text{i}}$ \hkl<1 1 0
 \caption{Migration barrier and structures of the \hkl[0 0 -1] DB (left) to the \hkl[0 -1 0] DB (right) transition involving the \hkl[1 1 0] DB (center) configuration. Migration simulations were performed utilizing time constants of \unit[1]{fs} (solid line) and \unit[100]{fs} (dashed line) for the Berendsen thermostat.}
 \label{fig:mig}
 \end{figure}
-Approximately \unit[2.24]{eV} are needed to turn the C$_{\text{i}}$ \hkl[0 0 -1] DB into the C$_{\text{i}}$ \hkl[1 1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
+The activation energy of approximately \unit[2.24]{eV} is needed to turn the C$_{\text{i}}$ \hkl[0 0 -1] DB into the C$_{\text{i}}$ \hkl[1 1 0] DB located at the neighbored lattice site in \hkl[1 1 -1] direction.
 Another barrier of \unit[0.90]{eV} exists for the rotation into the C$_{\text{i}}$ \hkl[0 -1 0] DB configuration for the path obtained with a time constant of \unit[100]{fs} for the Berendsen thermostat.
 Roughly the same amount would be necessary to excite the C$_{\text{i}}$ \hkl[1 1 0] DB to the BC configuration (\unit[0.40]{eV}) and a successive migration into the \hkl[0 0 1] DB configuration (\unit[0.50]{eV}) as displayed in our previous study\cite{zirkelbach10}.
 The former diffusion process, however, would more nicely agree with the ab initio path, since the migration is accompanied by a rotation of the DB orientation.
@@ -318,11 +318,19 @@ By considering a two step process and assuming equal preexponential factors for
 Accordingly, the effective barrier of migration of C$_{\text{i}}$ is overestimated by a factor of 2.4 to 3.5 compared to the highly accurate quantum-mechanical methods.
 This constitutes a serious limitation that has to be taken into account for modeling the C-Si system using the otherwise quite promising EA potential.
 
+\section{Quantum-mechanical investigations of defect combinations and related diffusion processes}
+\label{sec:qm}
 
 
+Qm stuff ... more accurate, less efficient ... some small probs that ...
+or in intro ...
 
+\subsection{Mobility of silicon defects}
 
-
+% todo- where to put mobility
+Concerning the mobility of the ground state Si$_{\text{i}}$, an activation energy of \unit[0.67]{eV} for the transition of the Si$_{\text{i}}$ \hkl[0 1 -1] to \hkl[1 1 0] DB located at the neighbored Si lattice site in \hkl[1 1 -1] direction is obtained by first-principles calculations.
+Further quantum-mechanical investigations revealed a barrier of \unit[0.94]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ H, \unit[0.53]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ T and \unit[0.35]{eV} for the Si$_{\text{i}}$ H to Si$_{\text{i}}$ T transition.
+These are of the same order of magnitude than values derived from other ab initio studies\cite{bloechl93,sahli05}.
 
 \section{Excursus: Competition of C$_{\text{i}}$ and C$_{\text{s}}$-Si$_{\text{i}}$}
 
@@ -364,23 +372,6 @@ In either case, no configuration more favorable than the C$_{\text{i}}$ \hkl<1 0
 Thus, a proper description with respect to the relative energies of formation is assumed for the EA potential.
 
 
-
-
-
-
-\section{Quantum-mechanical investigations of defect combinations and related diffusion processes}
-\label{sec:qm}
-
-Qm stuff ... more accurate, less efficient ... some small probs that ...
-or in intro ...
-
-\subsection{Mobility of silicon defects}
-
-% todo- where to put mobility
-Concerning the mobility of the ground state Si$_{\text{i}}$, an activation energy of \unit[0.67]{eV} for the transition of the Si$_{\text{i}}$ \hkl[0 1 -1] to \hkl[1 1 0] DB located at the neighbored Si lattice site in \hkl[1 1 -1] direction is obtained by first-principles calculations.
-Further quantum-mechanical investigations revealed a barrier of \unit[0.94]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ H, \unit[0.53]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ T and \unit[0.35]{eV} for the Si$_{\text{i}}$ H to Si$_{\text{i}}$ T transition.
-These are of the same order of magnitude than values derived from other ab initio studies\cite{bloechl93,sahli05}.
-
 \section{Classical potential calculations on the SiC precipitation in Si}
 \label{sec:md}