kleine fixes
authorhackbard <hackbard>
Mon, 29 Mar 2004 15:56:48 +0000 (15:56 +0000)
committerhackbard <hackbard>
Mon, 29 Mar 2004 15:56:48 +0000 (15:56 +0000)
nlsop/nlsop_emrs_2004.tex

index 099a532..fb0653d 100644 (file)
@@ -62,7 +62,7 @@ Formation of nanometric selforganized ordered amorphous lamella precipitates is
 \newpage
 
 \section{Model}
-A model describing the formation of nanometric selforganized ordered amorphous $SiC_x$ inclusions with increasing dose was introduced in \cite{1}. Figure \ref{1} shows the evolution into ordered lamellae with increasing dose.
+A model describing the formation of nanometric selforganized ordered amorphous $SiC_x$ inclusions was introduced in \cite{1}. Figure \ref{1} shows the evolution into ordered lamellae with increasing dose.
 
 %\begin{figure}[!h]
 %\begin{center}
@@ -76,7 +76,7 @@ As a result of the supersaturation of carbon atoms in silicon there is a nucleat
 \newpage
 
 \section{Simulation}
-Before discussing the implementation some assumptions and approximations have to be done. Figure \ref{2} shows the stopping powers and carbon concentration profile calculated by TRIM. The depth region we are interested in is between $0-300 \, nm$, the region between surface of the target and start of the continued amorphous $SiC_x$ layer (from now on called simulation window), where the nuclear stopping power and the implantation profile can be approximated by a linear function of depth. Furthermore the probability of amorphization is assumed to be proportional to the nuclear stopping power. A local probability of amorphization somewhere in the target is composed of three parts, the ballistic, carbon-induced and stress-induced amorphization. The ballistic amorphization is proportional to the nuclear stopping power, as mentioned before. the carbon-induced amorphization is a linear function of the local carbon concentration. the stress-induced amorphization is proportional to the compressive stress apllied by the amorphous neighbours. Thus the probability of a crystalline volume getting amorphous can be calculated as follows,
+Before discussing the implementation some assumptions and approximations have to be done. Figure \ref{2} shows the stopping powers and carbon concentration profile calculated by TRIM. The depth region we are interested in is between $0-300 \, nm$, the region between surface of the target and start of the continuous amorphous $SiC_x$ layer (from now on called simulation window), where the nuclear stopping power and the implantation profile can be approximated by a linear function of depth. Furthermore the probability of amorphization is assumed to be proportional to the nuclear stopping power. A local probability of amorphization somewhere in the target is composed of three parts, the ballistic, carbon-induced and stress-induced amorphization. The ballistic amorphization is proportional to the nuclear stopping power, as mentioned before. the carbon-induced amorphization is a linear function of the local carbon concentration. the stress-induced amorphization is proportional to the compressive stress apllied by the amorphous neighbours. Thus the probability of a crystalline volume getting amorphous can be calculated as follows,
 \[
  p_{c \rightarrow a} = b_{ap} + a_{cp} \times c^{local}_{carbon} + \sum_{amorphous \,  neighbours} \frac{a_{ap} \times c_{carbon}}{distance^2}
 \]