dille doener, weiter bei: Investigation of migration ...
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Thu, 9 Sep 2010 16:02:01 +0000 (18:02 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Thu, 9 Sep 2010 16:02:01 +0000 (18:02 +0200)
posic/publications/defect_combos.tex

index e116433..31ee1a8 100644 (file)
@@ -16,8 +16,8 @@
 \r
 \begin{document}\r
 \r
-%\title{Mobility of Carbon in Silicon -- a first principles study}\r
-\title{First principles study of defects in carbon implanted silicon}\r
+%\title{Mobility of Carbon in Silicon -- a first-principles study}\r
+\title{First-principles study of defects in carbon implanted silicon}\r
 \author{F. Zirkelbach}\r
 \author{B. Stritzker}\r
 \affiliation{Experimentalphysik IV, Universit\"at Augsburg, 86135 Augsburg, Germany}\r
 \affiliation{Department Physik, Universit\"at Paderborn, 33095 Paderborn, Germany}\r
 \r
 \begin{abstract}\r
-A first principles investigation of the mobility of carbon and silicon interstitials in silicon is presented.\r
-The migration mechanism of a carbon \hkl<1 0 0> interstitial in otherwise defect-free silicon has been investigated using density functional theory calculations.\r
-Furthermore, the influence of a nearby vacancy, another carbon interstitial and a substitutional defect as well as a silicon self-interstitial has been investigated systematically.\r
+A first-principles investigation of the mobility of carbon and silicon interstitials in silicon is presented.\r
+We investigated the migration mechanism of a carbon \hkl<1 0 0> interstitial and silicon \hkl<1 1 0> self-interstitial in otherwise defect-free silicon using density functional theory calculations.\r
+The influence of a nearby vacancy, another carbon interstitial and a substitutional defect as well as a silicon self-interstitial has been investigated systematically.\r
 Interactions of various combinations of defects have been characterized including a couple of selected migration pathways within these configurations.\r
 Almost all of the investigated pairs of defects tend to agglomerate allowing for a reduction in strain.\r
 The formation of structures involving strong carbon-carbon bonds was found to occur very unlikely.\r
 In contrast, substitutional carbon was found to occur in all probability.\r
-A long range capture radius has been found for pairs of interstitial carbon as well as interstitial carbon and vacancies.\r
+A long range capture radius has been observed for pairs of interstitial carbon as well as interstitial carbon and vacancies.\r
 A rather small capture radius has been identified for substitutional carbon and silicon self-interstitials.\r
-Based on these results conclusions regarding the precipitation mechanism of silicon carbide in bulk silicon are derived and its conformability to experimental findings is discussed.\r
+We derive conclusions on the precipitation mechanism of silicon carbide in bulk silicon and discuss conformability to experimental findings.\r
 \end{abstract}\r
 \r
-\keywords{point defects, defect clusters, migration, interstitials, ion implantation, first principles calculations}\r
+\keywords{point defects, defect clusters, migration, interstitials, ion implantation, first-principles calculations}\r
 \pacs{61.72.J-,61.72.Yx,61.72.uj,66.30.J-,79.20.Rf,31.15.A-}\r
 \maketitle\r
 \r
@@ -55,28 +55,29 @@ Ion beam synthesis (IBS) consisting of high-dose carbon implantation into crysta
 However, the process of the formation of SiC precipitates in Si during C implantation is not yet fully understood.\r
 Based on experimental high resolution transmission electron microscopy (HREM) studies\cite{werner96,werner97,eichhorn99,lindner99_2,koegler03} it is assumed that incorporated C atoms form C-Si dimers (dumbbells) on regular Si lattice sites.\r
 The highly mobile C interstitials agglomerate into large clusters followed by the formation of incoherent 3C-SiC nanocrystallites once a critical size of the cluster is reached.\r
-In contrast, investigations of the precipitation in strained Si$_{1-y}$C$_y$/Si heterostructures formed by molecular beam epitaxy (MBE)\cite{strane94,guedj98} suggest an initial coherent precipitation by an agglomeration of substitutional instead of interstitial C followed by a loss of coherency once the increasing strain energy surpasses the interfacial energy of the incoherent 3C-SiC precipitate and c-Si.\r
-These two different mechanisms of precipitation might be attributed to the respective method of fabrication, i.e. whether it occurs inside the Si bulk or on a Si surface.\r
+In contrast, investigations of SiC precipitation in studies on strained Si$_{1-y}$C$_y$/Si heterostructures formed by molecular beam epitaxy (MBE)\cite{strane94,guedj98} suggest an initial coherent precipitation by agglomeration of substitutional instead of interstitial C followed by the loss of coherency once the increasing strain energy surpasses the interfacial energy of the incoherent 3C-SiC precipitate and the c-Si substrate.\r
+These two different mechanisms of precipitation might be attributed to the respective method of fabrication, i.e. whether precipitation occurs inside the Si bulk or on the Si surface.\r
 However, in another IBS study Nejim et al. propose a topotactic transformation remaining structure and orientation that is likewise based on the formation of substitutional C and a concurrent reaction of the excess Si self-interstitials with further implanted C atoms\cite{nejim95}.\r
 Solving this controversy and understanding the effective underlying processes will enable significant technological progress in 3C-SiC thin film formation driving the superior polytype for potential applications in high-performance electronic device production\cite{wesch96}.\r
 \r
-Atomistic simulations offer a powerful tool of investigation providing detailed insight not accessible by experiment.\r
+Atomistic simulations offer a powerful tool of investigation on a microscopic level providing detailed insight not accessible by experiment.\r
 A lot of theoretical work has been done on intrinsic point defects in Si\cite{bar-yam84,bar-yam84_2,car84,batra87,bloechl93,tang97,leung99,colombo02,goedecker02,al-mushadani03,hobler05,sahli05,posselt08,ma10}, threshold displacement energies in Si\cite{mazzarolo01,holmstroem08} important in ion implantation, C defects and defect reactions in Si\cite{tersoff90,dal_pino93,capaz94,burnard93,leary97,capaz98,zhu98,mattoni2002,park02,jones04}, the SiC/Si interface\cite{chirita97,kitabatake93,cicero02,pizzagalli03} and defects in SiC\cite{bockstedte03,rauls03a,gao04,posselt06,gao07}.\r
 However, none of the mentioned studies consistently investigates entirely the relevant defect structures and reactions concentrated on the specific problem of 3C-SiC formation in C implanted Si.\r
 % but mattoni2002 actually did a lot. maybe this should be mentioned!\r
 In fact, in a combined analytical potential molecular dynamics and ab initio study\cite{mattoni2002} the interaction of substitutional C with Si self-interstitials and C interstitials is evaluated.\r
 However, investigations are, first of all, restricted to interaction chains along the \hkl[1 1 0] and \hkl[-1 1 0] direction, secondly lacking combinations of C interstitials and, finally, not considering migration barriers providing further information on the probability of defect agglomeration.\r
 \r
-By first principles atomistic simulations this work aims to shed light on basic processes involved in the precipitation mechanism of SiC in Si.\r
+By first-principles atomistic simulations this work aims to shed light on basic processes involved in the precipitation mechanism of SiC in Si.\r
 During implantation defects such as vacancies (V), substitutional C (C$_{\text{s}}$), interstitial C (C$_{\text{i}}$) and Si self-interstitials (Si$_{\text{i}}$) are created, which play a decisive role in the precipitation process.\r
 In the following a systematic investigation of density functional theory (DFT) calculations of the structure, energetics and mobility of carbon defects in silicon as well as the influence of other point defects in the surrounding is presented.\r
+% TODO: maybe delete: decisive role half sentence\r
 \r
 %  --------------------------------------------------------------------------------\r
 \section{Methodology}\r
 \r
-The first principles DFT calculations were performed with the plane-wave based Vienna Ab-initio Simulation Package (VASP)\cite{kresse96}.\r
+The first-principles DFT calculations were performed with the plane-wave based Vienna ab initio simulation package (VASP)\cite{kresse96}.\r
 The Kohn-Sham equations were solved using the generalized-gradient exchange-correlation (XC) functional approximation proposed by Perdew and Wang\cite{perdew86,perdew92}.\r
-The electron-ion interaction is described by norm-conserving ultra-soft pseudopotentials\cite{hamann79} as implemented in VASP\cite{vanderbilt90}.\r
+The electron-ion interaction was described by norm-conserving ultra-soft pseudopotentials\cite{hamann79} as implemented in VASP\cite{vanderbilt90}.\r
 Throughout this work an energy cut-off of \unit[300]{eV} was used to expand the wave functions into the plane-wave basis.\r
 Sampling of the Brillouin zone was restricted to the $\Gamma$-point.\r
 The defect structures and the migration paths were modelled in cubic supercells with a side length of \unit[1.6]{nm} containing $216$ Si atoms.\r
@@ -93,7 +94,7 @@ Accordingly, energetically favorable configurations show binding energies below
 \r
 The implantation of highly energetic C atoms results in a multiplicity of possible defect configurations.\r
 Next to individual Si$_{\text{i}}$, C$_{\text{i}}$, V and C$_{\text{s}}$ defects, combinations of these defects and their interaction are considered important for the problem under study.\r
-In the following the structure and energetics of separated defects are presented.\r
+First of all, structure and energetics of separated defects are presented.\r
 The investigations proceed with pairs of the ground state and, thus, most probable defect configurations that are believed to be fundamental in the Si to SiC transition.\r
 \r
 \subsection{Separated defects in silicon}\r
@@ -154,44 +155,44 @@ Fig.~\ref{fig:sep_def} shows the obtained structures while the corresponding ene
  Ref.\cite{dal_pino93,capaz94} & - & - & - & - & - & 1.89\cite{dal_pino93} & x & - & x+2.1\cite{capaz94}\r
 \end{tabular}\r
 \end{ruledtabular}\r
-\caption{Formation energies of silicon and carbon point defects in crystalline silicon given in eV. T denotes the tetrahedral, H the hexagonal and BC the bond-centered interstitial configuration. V corresponds to the vacancy configuration. Dumbbell configurations are abbreviated by DB.}\r
+\caption{Formation energies of silicon and carbon point defects in crystalline silicon given in electron volt. T denotes the tetrahedral, H the hexagonal and BC the bond-centered interstitial configuration. V corresponds to the vacancy configuration. Dumbbell configurations are abbreviated by DB.}\r
 \label{table:sep_eof}\r
 \end{table*}\r
 Results obtained by the present study compare well with results from literature\cite{leung99,al-mushadani03,dal_pino93,capaz94}.\r
 Regarding intrinsic defects in Si, the \hkl<1 1 0> self-interstitial dumbbell (Si$_{\text{i}}$ \hkl<1 1 0> DB) is found to be the ground state configuration tersely followed by the hexagonal and tetrahedral configuration, which is the consensus view for Si$_{\text{i}}$\cite{leung99,al-mushadani03}.\r
 In the case of a C impurity, next to the C$_{\text{s}}$ configuration, in which a C atom occupies an already vacant Si lattice site, the C \hkl<1 0 0> interstitial dumbbell (C$_{\text{i}}$ \hkl<1 0 0> DB) constitutes the energetically most favorable configuration, in which the C and Si dumbbell atoms share a regular Si lattice site.\r
 This finding is in agreement with several theoretical\cite{burnard93,leary97,dal_pino93,capaz94,jones04} and experimental\cite{watkins76,song90} investigations, which all predict this configuration as the ground state.\r
-However, to our best knowledge, no energy of formation for this type of defect based on first principles calculations has yet been explicitly stated in literature.\r
+However, to our best knowledge, no energy of formation for this type of defect based on first-principles calculations has yet been explicitly stated in literature.\r
 \r
-Instead, Capaz et al.\cite{capaz94}, investigating migration pathways of the C$_{\text{i}}$ \hkl<1 0 0> DB, find this defect to be \unit[2.1]{eV} lower in energy than the bond-centered (BC) configuration, which is claimed to constitute a saddle point configuration in the migration path within the \hkl(1 1 0) plane and, thus, interpreted as the barrier of migration for the respective path.\r
+Instead, Capaz et al.\cite{capaz94}, investigating migration pathways of the C$_{\text{i}}$ \hkl<1 0 0> DB, find this defect to be \unit[2.1]{eV} lower in energy than the bond-centered (BC) configuration.\r
+The BC configuration is claimed to constitute the saddle point within the C$_{\text{i}}$ \hkl[0 0 -1] DB migration path residing in the \hkl(1 1 0) plane and, thus, interpreted as the barrier of migration for the respective path.\r
 However, the present study indicates a local minimum state for the BC defect if spin polarized calculations are performed resulting in a net magnetization of two electrons localized in a torus around the C atom.\r
 Another DFT calculation without fully accounting for the electron spin results in the smearing of a single electron over two non-degenerate Kohn-Sham states and an increase of the total energy by \unit[0.3]{eV} for the BC configuration.\r
-Regardless of the rather small correction of \unit[0.3]{eV} due to the spin, the difference we found is much smaller (\unit[0.9]{eV}), which would nicely compare to experimental findings $(\unit[0.70-0.87]{eV})$\cite{lindner06,tipping87,song90} for the migration barrier.\r
+Regardless of the rather small correction of \unit[0.3]{eV} due to the spin, the difference we found is much smaller (\unit[0.94]{eV}), which would nicely compare to experimentally observed migration barriers of \unit[0.70-0.87]{eV}\cite{lindner06,tipping87,song90}.\r
 However, since the BC configuration constitutes a real local minimum another barrier exists which is about \unit[1.2]{eV} in height.\r
 Indeed Capaz et al. propose another path and find it to be the lowest in energy\cite{capaz94}, in which a C$_{\text{i}}$ \hkl[0 0 -1] DB migrates to a C$_{\text{i}}$ \hkl[0 -1 0] DB located at the next neighbored Si lattice site in \hkl[1 1 -1] direction.\r
-Calculations in this work reinforce this path by an additional improvement of the quantitative conformance of the barrier height (\unit[0.9]{eV}) to experimental values.\r
+Calculations in this work reinforce this path by an additional improvement of the quantitative conformance of the barrier height (\unit[0.90]{eV}) to experimental values.\r
 A more detailed description can be found in a previous study\cite{zirkelbach10a}.\r
 \r
-Next to the C BC configuration the vacancy and Si$_{\text{i}}$ \hkl<1 0 0> DB have to be treated by taking into account the spin of the electrons.\r
+Next to the C$_{\text{i}}$ BC configuration the vacancy and Si$_{\text{i}}$ \hkl<1 0 0> DB have to be treated by taking into account the spin of the electrons.\r
 For the vacancy the net spin up electron density is localized in caps at the four surrounding Si atoms directed towards the vacant site.\r
 In the  Si$_{\text{i}}$ \hkl<1 0 0> DB configuration the net spin up density is localized in two caps at each of the two DB atoms perpendicularly aligned to the bonds to the other two Si atoms respectively.\r
 No other configuration, within the ones that are mentioned, is affected.\r
 \r
-Concerning the mobility of the ground state Si$_{\text{i}}$, an activation energy of \unit[0.67]{eV} was found for the transition of the Si$_{\text{i}}$ \hkl[0 1 -1] to the \hkl[1 1 0] DB located at the next neighbored Si lattice site in \hkl[1 1 -1] direction.\r
+Concerning the mobility of the ground state Si$_{\text{i}}$, we found an activation energy of \unit[0.67]{eV} for the transition of the Si$_{\text{i}}$ \hkl[0 1 -1] to \hkl[1 1 0] DB located at the next neighbored Si lattice site in \hkl[1 1 -1] direction.\r
 Further investigations revealed a barrier of \unit[0.94]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ H, \unit[0.53]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ T and \unit[0.35]{eV} for the Si$_{\text{i}}$ H to Si$_{\text{i}}$ T transition.\r
-The obtained values are within the same order of magnitude than values derived from other ab initio studies\cite{bloechl93,sahli05}.\r
+Obtained values are of the same order of magnitude than values derived from other ab initio studies\cite{bloechl93,sahli05}.\r
 \r
 \subsection{Pairs of C$_{\text{i}}$}\r
 \r
-First of all C$_{\text{i}}$ pairs of the \hkl<1 0 0>-type have been investigated.\r
-Fig.~\ref{fig:combos_ci} schematically displays the position of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and the various positions for the second defect (1-5) used for investigating the defect pairs.\r
-Table~\ref{table:dc_c-c} summarizes the binding energies for the combination with a second C-Si \hkl<1 0 0> DB obtained for different orientations at positions 1 to 5.\r
+C$_{\text{i}}$ pairs of the \hkl<1 0 0> type have been investigated in the first part.\r
+Fig.~\ref{fig:combos_ci} schematically displays the initial C$_{\text{i}}$ \hkl[0 0 -1] DB structure and various positions for the second defect (1-5) that have been used for investigating defect pairs.\r
+Table~\ref{table:dc_c-c} summarizes resulting binding energies for the combination with a second C-Si \hkl<1 0 0> DB obtained for different orientations at positions 1 to 5.\r
 \begin{figure}\r
-%\begin{minipage}{0.49\columnwidth}\r
 \subfigure[]{\label{fig:combos_ci}\includegraphics[width=0.45\columnwidth]{combos_ci.eps}}\r
 \hspace{0.1cm}\r
 \subfigure[]{\label{fig:combos_si}\includegraphics[width=0.45\columnwidth]{combos.eps}}\r
-\caption{Positions of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB (I) (Fig.~\ref{fig:combos_ci}), the lattice site chosen for the initial Si$_{\text{i}}$ \hkl<1 1 0> DB (Si$_{\text{i}}$) occupying various orientations (Fig.~\ref{fig:combos_si}) and neighbored positions (1-5) for the second defect used for investigating defect pairs.} \r
+\caption{Position of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB (I) (Fig.~\ref{fig:combos_ci}) and of the lattice site chosen for the initial Si$_{\text{i}}$ \hkl<1 1 0> DB (Si$_{\text{i}}$) (Fig.~\ref{fig:combos_si}). Lattice sites for the second defect used for investigating defect pairs are numbered from 1 to 5.} \r
 \label{fig:combos}\r
 \end{figure}\r
 \begin{table}\r
@@ -207,21 +208,21 @@ Table~\ref{table:dc_c-c} summarizes the binding energies for the combination wit
  \hkl[1 0 0] & -2.25 & -2.16 & -0.10 & -0.27 & -1.38 & -0.06\\\r
 \end{tabular}\r
 \end{ruledtabular}\r
-\caption{Binding energies of C$_{\text{i}}$ \hkl<1 0 0>-type defect pairs in eV. Equivalent configurations exhibit equal energies. The first column lists the orientation of the defect, which is combined with the initial C$_{\text{i}}$ \hkl[0 0 -1] dumbbell. The position index of the second defect is given in the first row according to Fig.~\ref{fig:combos}. R corresponds to the position located at $\frac{a_{\text{Si}}}{2}\hkl[3 2 3]$ relative to the initial defect position, which is the maximum realizable distance ($\approx \unit[1.3]{nm}$) due to periodic boundary conditions.}\r
+\caption{Binding energies in eelctron volt of C$_{\text{i}}$ \hkl<1 0 0>-type defect pairs. Equivalent configurations exhibit equal energies. Column 1 lists the orientation of the second defect, which is combined with the initial C$_{\text{i}}$ \hkl[0 0 -1] DB. The position index of the second defect is given in the first row according to Fig.~\ref{fig:combos}. R corresponds to the position located at $\frac{a_{\text{Si}}}{2}\hkl[3 2 3]$ relative to the initial defect position, which is the maximum realizable defect separation distance ($\approx \unit[1.3]{nm}$) due to periodic boundary conditions.}\r
 \label{table:dc_c-c}\r
 \end{table}\r
 Most of the obtained configurations result in binding energies well below zero indicating a preferable agglomeration of these type of defects.\r
 For increasing distances of the defect pair the binding energy approaches to zero (R in Table~\ref{table:dc_c-c}) as it is expected for non-interacting isolated defects.\r
 Energetically favorable and unfavorable configurations can be explained by stress compensation and increase respectively based on the resulting net strain of the respective configuration of the defect combination.\r
-Antiparallel orientations of the second defect (\hkl[0 0 1]) at positions located below the \hkl(0 0 1) plane with respect to the initial one (positions 1, 2 and 4) show the energetically most unfavorable configurations.\r
+Antiparallel orientations of the second defect, i.e. \hkl[0 0 1] for positions located below the \hkl(0 0 1) plane with respect to the initial one (positions 1, 2 and 4) form the energetically most unfavorable configurations.\r
 In contrast, the parallel and particularly the twisted orientations constitute energetically favorable configurations, in which a vast reduction of strain is enabled by combination of these defects.\r
 \r
-Mattoni et al.\cite{mattoni2002} predict the ground state configuration for a \hkl[1 0 0] or equivalently a \hkl[0 1 0] defect created at position 1 with both defects basically maintaining the DB structure, resulting in a binding energy of \unit[-2.1]{eV}.\r
-In this work we found a further relaxation of this defect structure.\r
+Mattoni et al.\cite{mattoni2002} predict the ground state configuration for a \hkl[1 0 0] or equivalently a \hkl[0 1 0] defect created at position 1 with both defects basically maintaining the as-isolated DB structure, resulting in a binding energy of \unit[-2.1]{eV}.\r
+In this work we observed a further relaxation of this defect structure.\r
 The C atom of the second and the Si atom of the initial DB move towards each other forming a bond, which results in a somewhat lower binding energy of \unit[-2.25]{eV}.\r
-Furthermore a more favorable configuration was found for the combination with a \hkl[0 -1 0] and \hkl[-1 0 0] DB respectively, which is assumed to constitute the actual ground state configuration of two C$_{\text{i}}$ DBs in Si.\r
+Apart from that, a more favorable configuration was found for the combination with a \hkl[0 -1 0] and \hkl[-1 0 0] DB respectively, which is assumed to constitute the actual ground state configuration of two C$_{\text{i}}$ DBs in Si.\r
 The atomic arrangement is shown in the bottom right of Fig.~\ref{fig:036-239}.\r
-The two C atoms form a strong C-C bond, which is responsible for the large gain in energy resulting in a binding energy of \unit[-2.39]{eV}.\r
+The two C$_{\text{i}}$ atoms form a strong C-C bond, which is responsible for the large gain in energy resulting in a binding energy of \unit[-2.39]{eV}.\r
 \r
 Investigating migration barriers enables to predict the probability of formation of defect complexes by thermally activated diffusion processes.\r
 % ground state configuration, C cluster\r
@@ -264,7 +265,7 @@ The migration barrier and correpsonding structures are shown in Fig.~\ref{fig:18
 \end{figure}\r
 Finally, this type of defect pair is represented four times (two times more often than the ground state configuration) within the systematically investigated configuration space.\r
 The latter is considered very important for high temperatures, which is accompanied by an increase in the entropic contribution to structure formation.\r
-Thus, C agglomeration indeed is expected but only a low probability is assumed for C clustering by thermally activated processes with regard to the considered period of time.\r
+Thus, C defect agglomeration indeed is expected but only a low probability is assumed for C-C clustering by thermally activated processes with regard to the considered period of time.\r
 % ?!?\r
 % look for precapture mechnism (local minimum in energy curve)\r
 % also: plot energy all confs with respect to C-C distance\r
@@ -281,7 +282,7 @@ The binding energies of the energetically most favorable configurations with the
 C-C distance [nm] & 0.14 & 0.46 & 0.65 & 0.86 & 1.05 & 1.08 \r
 \end{tabular}\r
 \end{ruledtabular}\r
-\caption{Binding energies $E_{\text{b}}$ and C-C distance of energetically most favorable C$_{\text{i}}$ \hkl<1 0 0>-type defect pairs separated along bonds in the \hkl[1 1 0] direction.}\r
+\caption{Binding energies $E_{\text{b}}$ and C-C distance of energetically most favorable C$_{\text{i}}$ \hkl<1 0 0>-type defect pairs separated along the \hkl[1 1 0] bond chain.}\r
 \label{table:dc_110}\r
 \end{table}\r
 The binding energy of these configurations with respect to the C-C distance is plotted in Fig.~\ref{fig:dc_110}.\r
@@ -354,7 +355,7 @@ A net magnetization of two spin up electrons, which are euqally localized as in
 In fact, these two configurations are very similar and are qualitatively different from the C$_{\text{i}}$ \hkl<1 0 0> DB that does not show magnetization but a nearly collinear bond of the C DB atom to its two next neighbored Si atoms while the Si DB atom approximates \unit[120]{$^{\circ}$} angles inbetween its bonds.\r
 Configurations a, A and B are not affected by spin polarization and show zero magnetization.\r
 Mattoni et~al.\cite{mattoni2002}, in contrast, find configuration b less favorable than configuration A by \unit[0.2]{eV}.\r
-Next to differences in the XC-functional and plane-wave energy cut-off this discrepancy might be attributed to the missing accounting for spin polarization in their calculations, which -- as has been shown for the C$_{\text{i}}$ BC configuration -- results in an increase of configurational energy.\r
+Next to differences in the XC functional and plane-wave energy cut-off this discrepancy might be attributed to the missing accounting for spin polarization in their calculations, which -- as has been shown for the C$_{\text{i}}$ BC configuration -- results in an increase of configurational energy.\r
 Indeed, investigating the migration path from configurations a to b and, in doing so, reusing the wave functions of the previous migration step the final structure, i.e. configuration b, was obtained with zero magnetization and an increase in configurational energy by \unit[0.2]{eV}.\r
 Obviously a different energy minimum of the electronic system is obatined indicating hysteresis behavior.\r
 However, since the total energy is lower for the magnetic result it is believed to constitute the real, i.e. global, minimum with respect to electronic minimization.\r
@@ -396,7 +397,7 @@ In contrast to C$_{\text{s}}$ this is also valid for positions along \hkl[1 1 0]
 Even for the largest possible distance (R) achieved in the calculations of the periodic supercell a binding energy as low as \unit[-0.31]{eV} is observed.\r
 The ground state configuration is obtained for a V at position 1.\r
 The C atom of the DB moves towards the vacant site forming a stable C$_{\text{s}}$ configuration resulting in the release of a huge amount of energy.\r
-The second most favored configuration is accomplished for a V located at position 3 due to the reduction of compressive strain of the Si DB atom and its two upper Si neighbors present in the C$_{\text{i}}$ DB configuration.\r
+The second most favorable configuration is accomplished for a V located at position 3 due to the reduction of compressive strain of the Si DB atom and its two upper Si neighbors present in the C$_{\text{i}}$ DB configuration.\r
 This configuration is follwed by the structure, in which a vacant site is created at position 2.\r
 Similar to the observations for C$_{\text{s}}$ in the last subsection a reduction of strain along \hkl[0 0 1] is enabled by this configuration.\r
 Relaxed structures of the latter two defect combinations are shown in the bottom left of Fig.~\ref{fig:314-539} and \ref{fig:059-539} respectively together with their energetics during transition into the ground state.\r
@@ -465,9 +466,9 @@ Corresponding formation as well as binding energies and the separation distances
 In total ten different configurations exist within the investigated range.\r
 Configuration \RM{1} constitutes the energetically most favorable structure exhibiting a formation energy of \unit[4.37]{eV}.\r
 Obviously the configuration of a \hkl[1 1 0] Si$_{\text{i}}$ DB and a next neighbored C$_{\text{s}}$ in the same direction as the alignment of the DB, as displayed in the bottom right of Fig.~\ref{fig:162-097}, enables the largest possible reduction of strain.\r
-The Si$_{\text{i}}$ DB atoms are displaced towards the lattice site occupied by the C$_{\text{s}}$ atom in such a way that the Si DB atom closest to the C atom does no longer form bonds to its top Si neighbors but to the second next neighbored Si atom along \hkl[1 1 0].\r
+The Si$_{\text{i}}$ DB atoms are displaced towards the lattice site occupied by the C$_{\text{s}}$ atom in such a way that the Si DB atom closest to the C atom does no longer form bonds to its top Si neighbors, but to the second next neighbored Si atom along \hkl[1 1 0].\r
 However, this configuration is energetically less favorable than the \hkl<1 0 0> C$_{\text{i}}$ DB, which, thus, remains the ground state of a C atom introduced into otherwise perfect c-Si.\r
-The transition involving the latter two configurations is shown in Fig.~\ref{fig:dc_si-s}.\r
+The transition involving the latter two configurations is shown in Fig.~\ref{fig:162-097}.\r
 \begin{figure}\r
 \includegraphics[width=\columnwidth]{162-097.ps}\r
 \caption{Migration barrier and structures of the transition of a \hkl[1 1 0] Si$_{\text{i}}$ DB next to C$_{\text{s}}$ (right) into the C$_{\text{i}}$ \hkl[0 0 -1] DB configuration (left). An activation energy of \unit[0.12]{eV} is observed.}\r
@@ -512,7 +513,7 @@ $t=\unit[2230]{fs}$
 $t=\unit[2900]{fs}$\r
 \end{center}\r
 \end{minipage}\r
-\caption{Atomic configurations of an ab initio molecular dynamics run at \unit[900]{$^{\circ}$C} starting from a configuration of C$_{\text{s}}$ located next to a Si$_{\text{i}}$ DB (atoms 1 and 2). Equal atoms are marked by equal numbers. Blue lines correpsond to bonds, which are drawn for substantial atoms.}\r
+\caption{Atomic configurations of an ab initio molecular dynamics run at \unit[900]{$^{\circ}$C} starting from a configuration of C$_{\text{s}}$ located next to a Si$_{\text{i}}$ DB (atoms 1 and 2). Equal atoms are marked by equal numbers. Bonds are drawn for substantial atoms.}\r
 \label{fig:md}\r
 \end{figure}\r
 \r
@@ -544,7 +545,7 @@ Thus, elevated temperatures might lead to configurations of C$_{\text{s}}$ and a
 \r
 These findings allow to draw conclusions on the mechanisms involved in the process of SiC conversion in Si.\r
 Agglomeration of C$_{\text{i}}$ is energetically favored and enabled by a low activation energy for migration.\r
-Although ion implantation is a process far from thermodynamic equlibrium, which might result in phases not described by the Si/C phase diagram, i.e. a C phase in Si, high activation energies are believed to be responsible for a low probability of the formation of C clusters.\r
+Although ion implantation is a process far from thermodynamic equlibrium, which might result in phases not described by the Si/C phase diagram, i.e. a C phase in Si, high activation energies are believed to be responsible for a low probability of the formation of C-C clusters.\r
 \r
 Unrolling these findings on the initially stated controversy present in the precipitation model, an increased participation of C$_{\text{s}}$ already in the initial stage must be assumed due to its high probability of incidence.\r
 In addition, thermally activated, C$_{\text{i}}$ might turn into C$_{\text{s}}$.\r
@@ -583,7 +584,7 @@ Si$_{\text{i}}$ constitutes the vehicle for the rearrangement of C$_{\text{s}}$.
 \r
 % ----------------------------------------------------\r
 \section*{Acknowledgment}\r
-We gratefully acknowledge financial support by the Bayerische Forschungsstiftung (DPA-61/05) and the Deutsche Forschungsgemeinschaft (DFG SCHM 1361/11).\r
+We gratefully acknowledge financial support by the Bayerische Forschungsstiftung (Grant No. DPA-61/05) and the Deutsche Forschungsgemeinschaft (Grant No. DFG SCHM 1361/11).\r
 \r
 % --------------------------------- references -------------------\r
 \r