nearly finished precipitate
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Wed, 16 Jun 2010 20:29:12 +0000 (22:29 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Wed, 16 Jun 2010 20:29:12 +0000 (22:29 +0200)
posic/talks/seminar_2010.tex

index ce2956b..b76a6a8 100644 (file)
@@ -1,6 +1,6 @@
 \pdfoutput=0
-\documentclass[landscape,semhelv,draft]{seminar}
-%\documentclass[landscape,semhelv]{seminar}
+%\documentclass[landscape,semhelv,draft]{seminar}
+\documentclass[landscape,semhelv]{seminar}
 
 \usepackage{verbatim}
 \usepackage[greek,german]{babel}
 }
 
  \begin{itemize}
-  \item Polyteps and fabrication of silicon carbide
+  \item Polytyps and fabrication of silicon carbide
   \item Supposed precipitation mechanism of SiC in Si
   \item Utilized simulation techniques
         \begin{itemize}
@@ -529,7 +529,7 @@ V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
 n(r)=\sum_i^N|\Phi_i(r)|^2
 \]
   \item \underline{Self-consistent solution}\\
-$n(r)$ depends on $\Phi_i$, which depends on $V_{\text{eff}}$,
+$n(r)$ depends on $\Phi_i$, which depend on $V_{\text{eff}}$,
 which in turn depends on $n(r)$
   \item \underline{Variational principle}
         - minimize total energy with respect to $n(r)$
@@ -1763,9 +1763,9 @@ Potential enhanced problem of slow phase space propagation
 Increased temperature simulations without TAD corrections\\
 (accelerated methods or higher time scales exclusively not sufficient)
 
-\begin{picture}(0,0)(-262,-10)
-\frame{
-\begin{minipage}{4.3cm}
+\begin{picture}(0,0)(-260,-30)
+\framebox{
+\begin{minipage}{4.2cm}
 \tiny
 \begin{center}
 \vspace{0.03cm}
@@ -1781,9 +1781,9 @@ Increased temperature simulations without TAD corrections\\
 }
 \end{picture}
 
-\begin{picture}(0,0)(-305,-152)
-\frame{
-\begin{minipage}{2.6cm}
+\begin{picture}(0,0)(-305,-155)
+\framebox{
+\begin{minipage}{2.5cm}
 \tiny
 \begin{center}
 retain proper\\
@@ -1798,72 +1798,313 @@ thermodynmic sampling
 \begin{slide}
 
  {\large\bf
-  Increased temperature simulations
+  Increased temperature simulations at low C concentration
  }
 
 \small
 
-Low concentration simulation
-
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{tot_pc_thesis.ps}
+\end{minipage}
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
+\end{minipage}
 
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
+\end{minipage}
+\begin{minipage}{6.5cm}
+\scriptsize
+ \underline{Si-C bonds:}
+ \begin{itemize}
+  \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
+  \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
+ \end{itemize}
+ \underline{Si-Si bonds:}
+ {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
+ ($\rightarrow$ 0.325 nm)\\[0.1cm]
+ \underline{C-C bonds:}
+ \begin{itemize}
+  \item C-C next neighbour pairs reduced (mandatory)
+  \item Peak at 0.3 nm slightly shifted
+        \begin{itemize}
+         \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
+               $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
+               combinations (|)\\
+               $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
+               ($\downarrow$)
+         \item Range [|-$\downarrow$]:
+               {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
+               with nearby Si$_{\text{I}}$}
+        \end{itemize}
+ \end{itemize}
+\end{minipage}
 
+\begin{picture}(0,0)(-330,-74)
+\color{blue}
+\framebox{
+\begin{minipage}{1.6cm}
+\tiny
+\begin{center}
+stretched SiC\\[-0.1cm]
+in c-Si
+\end{center}
+\end{minipage}
+}
+\end{picture}
 
 \end{slide}
 
 \begin{slide}
 
  {\large\bf
-  Increased temperature simulations
+  Increased temperature simulations at high C concentration
  }
 
-\small
+\footnotesize
 
-High concentration simulation
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{12_pc_thesis.ps}
+\end{minipage}
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
+\end{minipage}
+
+\begin{center}
+Decreasing cut-off artifact\\
+High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
+$\Rightarrow$ hard to categorize
+\end{center}
+
+\vspace{0.1cm}
 
+\framebox{
+\begin{minipage}[t]{6.0cm}
+0.186 nm: Si-C pairs $\uparrow$\\
+(as expected in 3C-SiC)\\[0.2cm]
+0.282 nm: Si-C-C\\[0.2cm]
+$\approx$0.35 nm: C-Si-Si
+\end{minipage}
+}
+\begin{minipage}{0.2cm}
+\hfill
+\end{minipage}
+\framebox{
+\begin{minipage}[t]{6.0cm}
+0.15 nm: C-C pairs $\uparrow$\\
+(as expected in graphite/diamond)\\[0.2cm]
+0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
+0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
+\end{minipage}
+}
 
+\vspace{0.1cm}
 
+\begin{center}
+{\color{red}Amorphous} SiC-like phase remains\\
+Slightly sharper peaks
+$\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics}
+due to temperature\\[0.1cm]
+\framebox{
+\bf
+Continue with higher temperatures and longer time scales
+}
+\end{center}
 
 \end{slide}
 
 \begin{slide}
 
  {\large\bf
-  Silicon carbide precipitation simulations
+  Valuation of a practicable temperature limit
  }
 
  \small
+
+\vspace{0.1cm}
+
+\begin{center}
+\framebox{
+{\color{blue}
+Recrystallization is a hard task!
+$\Rightarrow$ Avoid melting!
+}
+}
+\end{center}
  
- 4. temperature limit
+\vspace{0.1cm}
+
+\footnotesize
+
+\begin{minipage}{7.5cm}
+\includegraphics[width=7cm]{fe_and_t.ps}
+\end{minipage}
+\begin{minipage}{5.5cm}
+\underline{Melting does not occur instantly after}\\
+\underline{exceeding the melting point $T_{\text{m}}=2450\text{ K}$}
+\begin{itemize}
+\item required transition enthalpy
+\item hysterisis behaviour
+\end{itemize}
+\underline{Heating up c-Si by 1 K/ps}
+\begin{itemize}
+\item transition occurs at $\approx$ 3125 K
+\item $\Delta E=0.58\text{ eV/atom}=55.7\text{ kJ/mole}$\\
+      (literature: 50.2 kJ/mole)
+\end{itemize}
+\end{minipage}
 
+\vspace{0.1cm}
+
+\framebox{
+\begin{minipage}{4cm}
+Initially chosen temperatures:\\
+$1.0 - 1.2 \cdot T_{\text{m}}$
+\end{minipage}
+}
+\begin{minipage}{3cm}
+\begin{center}
+$\Longrightarrow$
+\end{center}
+\end{minipage}
+\framebox{
+\begin{minipage}{5cm}
+Introduced C (defects)\\
+$\rightarrow$ reduction of transition point\\
+$\rightarrow$ melting even at $T_{\text{m}}$
+\end{minipage}
+}
+
+\vspace{0.4cm}
+
+\begin{center}
+\framebox{
+{\color{blue}
+Maximum temperature used: $0.95\cdot T_{\text{m}}$
+}
+}
+\end{center}
 
 \end{slide}
 
 \begin{slide}
 
  {\large\bf
-  Silicon carbide precipitation simulations
+  Long time scale simulations at maximum temperature
  }
 
  \small
  
- 5. final TODO
+\vspace{1cm}
+
+\underline{Differences}
+\begin{itemize}
+ \item Cubic volume $\Rightarrow$ spherical volume
+ \item Amount of C atoms: 6000 $\rightarrow$ 5500
+ \item Temperature set to $0.95 \cdot T_{\text{m}}$
+ \item Simulation volume: 21 unit cells of c-Si in each direction
+\end{itemize}
+
+\vspace{1cm}
+
+\begin{center}
+ {\bf
+Simulations in progress! :)\\
+ }
+... show evolution of radial distribution in ns timesteps ...
+\end{center}
+
+\vspace{4cm}
 
 \end{slide}
 
 \begin{slide}
 
  {\large\bf
-  Silicon carbide precipitation simulations
+  Investigation of a silicon carbide precipitate in silicon
+ }
+
+ \footnotesize
+
+\vspace{0.2cm}
+
+\framebox{
+\scriptsize
+\begin{minipage}{5.3cm}
+\[
+\frac{8}{a_{\text{Si}}^3}(
+\underbrace{21^3 a_{\text{Si}}^3}_{=V}
+-\frac{4}{3}\pi x^3)+
+\underbrace{\frac{4}{y^3}\frac{4}{3}\pi x^3}_{\stackrel{!}{=}5500}
+=21^3\cdot 8
+\]
+\[
+\Downarrow
+\]
+\[
+\frac{8}{a_{\text{Si}}^3}\frac{4}{3}\pi x^3=5500
+\Rightarrow x = \left(\frac{5500 \cdot 3}{32 \pi} \right)^{1/3}a_{\text{Si}}
+\]
+\[
+y=\left(\frac{1}{2} \right)^{1/3}a_{\text{Si}}
+\]
+\end{minipage}
+}
+\begin{minipage}{0.3cm}
+\hfill
+\end{minipage}
+\begin{minipage}{7.0cm}
+\underline{Construction}
+\begin{itemize}
+ \item Simulation volume: 21$^3$ unit cells of c-Si
+ \item Spherical topotactically aligned precipitate\\
+       $r=3.0\text{ nm}$ $\Leftrightarrow$ $\approx$ 5500 C atoms
+ \item Create c-Si but skipped inside sphere of radius $x$
+ \item Create 3C-SiC inside sphere of radius $x$ and lattice constant $y$
+ \item Strong coupling to heat bath ($T=20\,^{\circ}\mathrm{C}$)
+\end{itemize}
+\end{minipage}
+
+\vspace{0.3cm}
+
+\begin{minipage}{6.2cm}
+\includegraphics[width=6cm,draft=false]{pc_0.ps}
+\end{minipage}
+\begin{minipage}{6.8cm}
+\underline{Results}
+\begin{itemize}
+ \item Slight increase of c-Si lattice constant!
+ \item C-C peaks (imply same distanced Si-Si peaks)
+       \begin{itemize}
+        \item New peak at 0.307 nm: NN in 3C-SiC
+        \item Bumps ({\color{green}$\downarrow$}):
+              4$^{\text{th}}$ and 6$^{\text{th}}$ NN
+       \end{itemize}
+ \item 3C-SiC lattice constant: 4.34 \AA (bulk: 4.36 \AA)\\
+       $\rightarrow$ compressed precipitate
+ \item Interface tension:\\
+       20.15 eV/nm$^2$ or $3.23 \times 10^{-4}$ J/cm$^2$
+\end{itemize}
+\end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Summary / Conclusion / Outlook
  }
 
  \small
 
+
 \end{slide}
 
 \begin{slide}
 
  {\large\bf
-  Investigation of a silicon carbide precipitate in silicon
+  Acknowledgements
  }
 
  \small